-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmyconfig.py
84 lines (63 loc) · 2.4 KB
/
myconfig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# This file has the configurations of the experiments.
import os
import torch
import multiprocessing
# Paths of downloaded LibriSpeech datasets.
TRAIN_DATA_DIR = os.path.join(
os.path.expanduser("~"),
"Code/github/SpeakerRecognitionFromScratch/data/LibriSpeech/train-clean-100")
TEST_DATA_DIR = os.path.join(
os.path.expanduser("~"),
"Code/github/SpeakerRecognitionFromScratch/data/LibriSpeech/test-clean")
# Paths of CSV files where the first column is speaker, and the second column is
# utterance file.
# These will allow you to train/evaluate using other datasets than LibriSpeech.
# If given, TRAIN_DATA_DIR and/or TEST_DATA_DIR will be ignored.
TRAIN_DATA_CSV = ""
TEST_DATA_CSV = ""
# Path of save model.
SAVED_MODEL_PATH = os.path.join(
os.path.expanduser("~"),
"Code/github/SpeakerRecognitionFromScratch/saved_model/saved_model.pt")
# Number of MFCCs for librosa.feature.mfcc.
N_MFCC = 40
# Hidden size of LSTM layers.
LSTM_HIDDEN_SIZE = 64
# Number of LSTM layers.
LSTM_NUM_LAYERS = 3
# Whether to use bi-directional LSTM.
BI_LSTM = True
# If false, use last frame of LSTM inference as aggregated output;
# if true, use mean frame of LSTM inference as aggregated output.
FRAME_AGGREGATION_MEAN = True
# Sequence length of the sliding window for LSTM.
SEQ_LEN = 100 # 3.2 seconds
# Sliding window step for LSTM inference.
SLIDING_WINDOW_STEP = 50 # 1.6 seconds
# Alpha for the triplet loss.
TRIPLET_ALPHA = 0.1
# How many triplets do we train in a single batch.
BATCH_SIZE = 8
# Learning rate.
LEARNING_RATE = 0.0001
# Save a model to disk every these many steps.
SAVE_MODEL_FREQUENCY = 10000
# Number of steps to train.
TRAINING_STEPS = 100000
# Whether we are going to train with SpecAugment.
SPECAUG_TRAINING = False
# Parameters for SpecAugment training.
SPECAUG_FREQ_MASK_PROB = 0.3
SPECAUG_TIME_MASK_PROB = 0.3
SPECAUG_FREQ_MASK_MAX_WIDTH = N_MFCC // 5
SPECAUG_TIME_MASK_MAX_WIDTH = SEQ_LEN // 5
# Number of triplets to evaluate for computing Equal Error Rate (EER).
# Both the number of positive trials and number of negative trials will be
# equal to this number.
NUM_EVAL_TRIPLETS = 10000
# Step of threshold sweeping for computing Equal Error Rate (EER).
EVAL_THRESHOLD_STEP = 0.001
# Number of processes for multi-processing.
NUM_PROCESSES = min(multiprocessing.cpu_count(), BATCH_SIZE)
# Wehther to use GPU or CPU.
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")