forked from bojone/o-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patho_gan_lsun.py
235 lines (195 loc) · 6.96 KB
/
o_gan_lsun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#! -*- coding: utf-8 -*-
import numpy as np
import scipy as sp
from scipy import misc
import glob
import imageio
from keras.models import Model
from keras.layers import *
from keras import backend as K
from keras.optimizers import RMSprop
from keras.callbacks import Callback
from keras.initializers import RandomNormal
import os,json
import warnings
warnings.filterwarnings("ignore") # 忽略keras带来的满屏警告
if not os.path.exists('samples'):
os.mkdir('samples')
imgs = glob.glob('../../lsun/church_outdoor/imgs/*.png')
np.random.shuffle(imgs)
img_dim = 128
z_dim = 128
num_layers = int(np.log2(img_dim)) - 3
max_num_channels = img_dim * 8
f_size = img_dim // 2**(num_layers + 1)
batch_size = 64
def imread(f, mode='gan', crop_size=256):
x = misc.imread(f, mode='RGB')
height,width = x.shape[:2]
crop_size = min([crop_size, height, width])
height_idx = (height - crop_size + 1) // 2
width_idx = (width - crop_size + 1 ) // 2
x = x[height_idx: height_idx+crop_size,
width_idx: width_idx+crop_size]
if mode == 'gan':
x = misc.imresize(x, (img_dim, img_dim))
x = x.astype(np.float32)
return x / 255 * 2 - 1
elif mode == 'fid':
x = misc.imresize(x, (299, 299))
return x.astype(np.float32)
class img_generator:
"""图片迭代器,方便重复调用
"""
def __init__(self, imgs, mode='gan', batch_size=64):
self.imgs = imgs
self.batch_size = batch_size
self.mode = mode
if len(imgs) % batch_size == 0:
self.steps = len(imgs) // batch_size
else:
self.steps = len(imgs) // batch_size + 1
def __len__(self):
return self.steps
def __iter__(self):
X = []
while True:
np.random.shuffle(self.imgs)
for i,f in enumerate(self.imgs):
X.append(imread(f, self.mode))
if len(X) == self.batch_size or i == len(self.imgs)-1:
X = np.array(X)
if self.mode == 'gan':
Z = np.random.randn(len(X), z_dim)
yield [X, Z], None
elif self.mode == 'fid':
yield X
X = []
# 编码器
x_in = Input(shape=(img_dim, img_dim, 3))
x = x_in
for i in range(num_layers + 1):
num_channels = max_num_channels // 2**(num_layers - i)
x = Conv2D(num_channels,
(5, 5),
strides=(2, 2),
padding='same',
kernel_initializer=RandomNormal(0, 0.02))(x)
if i > 0:
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x)
x = Flatten()(x)
x = Dense(z_dim,
kernel_initializer=RandomNormal(0, 0.02))(x)
e_model = Model(x_in, x)
e_model.summary()
# 生成器
z_in = Input(shape=(z_dim, ))
z = z_in
z = Dense(f_size**2 * max_num_channels,
kernel_initializer=RandomNormal(0, 0.02))(z)
z = Reshape((f_size, f_size, max_num_channels))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
for i in range(num_layers):
num_channels = max_num_channels // 2**(i + 1)
z = Conv2DTranspose(num_channels,
(5, 5),
strides=(2, 2),
padding='same',
kernel_initializer=RandomNormal(0, 0.02))(z)
z = BatchNormalization()(z)
z = Activation('relu')(z)
z = Conv2DTranspose(3,
(5, 5),
strides=(2, 2),
padding='same',
kernel_initializer=RandomNormal(0, 0.02))(z)
z = Activation('tanh')(z)
g_model = Model(z_in, z)
g_model.summary()
# 整合模型
x_in = Input(shape=(img_dim, img_dim, 3))
z_in = Input(shape=(z_dim, ))
x_real = x_in
x_fake = g_model(z_in)
x_fake_ng = Lambda(K.stop_gradient)(x_fake)
z_real = e_model(x_real)
z_fake = e_model(x_fake)
z_fake_ng = e_model(x_fake_ng)
train_model = Model([x_in, z_in],
[z_real, z_fake, z_fake_ng])
z_real_mean = K.mean(z_real, 1, keepdims=True)
z_fake_mean = K.mean(z_fake, 1, keepdims=True)
z_fake_ng_mean = K.mean(z_fake_ng, 1, keepdims=True)
def correlation(x, y):
x = x - K.mean(x, 1, keepdims=True)
y = y - K.mean(y, 1, keepdims=True)
x = K.l2_normalize(x, 1)
y = K.l2_normalize(y, 1)
return K.sum(x * y, 1, keepdims=True)
t1_loss = z_real_mean - z_fake_ng_mean
t2_loss = z_fake_mean - z_fake_ng_mean
z_corr = correlation(z_in, z_fake)
qp_loss = 0.25 * t1_loss[:, 0]**2 / K.mean((x_real - x_fake_ng)**2, axis=[1, 2, 3])
train_model.add_loss(K.mean(t1_loss + t2_loss - 0.5 * z_corr) + K.mean(qp_loss))
train_model.compile(optimizer=RMSprop(1e-4, 0.99))
train_model.metrics_names.append('t_loss')
train_model.metrics_tensors.append(K.mean(t1_loss))
train_model.metrics_names.append('z_corr')
train_model.metrics_tensors.append(K.mean(z_corr))
# 检查模型结构
train_model.summary()
# 采样函数
def sample(path, n=9, z_samples=None):
figure = np.zeros((img_dim * n, img_dim * n, 3))
if z_samples is None:
z_samples = np.random.randn(n**2, z_dim)
for i in range(n):
for j in range(n):
z_sample = z_samples[[i * n + j]]
x_sample = g_model.predict(z_sample)
digit = x_sample[0]
figure[i * img_dim:(i + 1) * img_dim,
j * img_dim:(j + 1) * img_dim] = digit
figure = (figure + 1) / 2 * 255
figure = np.round(figure, 0).astype('uint8')
imageio.imwrite(path, figure)
# 重构采样函数
def sample_ae(path, n=8):
figure = np.zeros((img_dim * n, img_dim * n, 3))
for i in range(n):
for j in range(n):
if j % 2 == 0:
x_sample = [imread(np.random.choice(imgs))]
else:
z_sample = e_model.predict(np.array(x_sample))
z_sample -= (z_sample).mean(axis=1, keepdims=True)
z_sample /= (z_sample).std(axis=1, keepdims=True)
x_sample = g_model.predict(z_sample * 0.9)
digit = x_sample[0]
figure[i * img_dim:(i + 1) * img_dim,
j * img_dim:(j + 1) * img_dim] = digit
figure = (figure + 1) / 2 * 255
figure = np.round(figure, 0).astype('uint8')
imageio.imwrite(path, figure)
class Trainer(Callback):
def __init__(self):
self.batch = 0
self.n_size = 9
self.iters_per_sample = 100
self.Z = np.random.randn(self.n_size**2, z_dim)
def on_batch_end(self, batch, logs=None):
if self.batch % self.iters_per_sample == 0:
sample('samples/test_%s.png' % self.batch,
self.n_size, self.Z)
sample_ae('samples/test_ae_%s.png' % self.batch)
train_model.save_weights('./train_model.weights')
self.batch += 1
if __name__ == '__main__':
trainer = Trainer()
img_data = img_generator(imgs, 'gan', batch_size)
train_model.fit_generator(img_data.__iter__(),
steps_per_epoch=len(img_data),
epochs=1000,
callbacks=[trainer])