forked from go-spatial/tegola
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tile.go
225 lines (192 loc) · 5.45 KB
/
tile.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
package tegola
import (
"fmt"
"math"
"github.com/go-spatial/geom"
"github.com/go-spatial/tegola/maths/webmercator"
)
const (
DefaultEpislon = 10.0
DefaultExtent = 4096
DefaultTileBuffer = 64.0
MaxZ = 22
)
var UnknownConversionError = fmt.Errorf("do not know how to convert value to requested value")
// Tile slippy map tilenames
// http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
type Tile struct {
Z uint
X uint
Y uint
Lat float64
Long float64
Tolerance float64
Extent float64
Buffer float64
// These values are cached
cached bool
// The width and height of the region.
xspan float64
yspan float64
// This is the computed bounding box.
extent *geom.Extent
bufpext *geom.Extent
}
// NewTile will return a non-nil tile object.
func NewTile(z, x, y uint) (t *Tile) {
t = &Tile{
Z: z,
X: x,
Y: y,
Buffer: DefaultTileBuffer,
Extent: DefaultExtent,
Tolerance: DefaultEpislon,
}
t.Lat, t.Long = t.Num2Deg()
t.Init()
return t
}
// NewTileLatLong will return a non-nil tile object.
func NewTileLatLong(z uint, lat, lon float64) (t *Tile) {
t = &Tile{
Z: z,
Lat: lat,
Long: lon,
Buffer: DefaultTileBuffer,
Extent: DefaultExtent,
Tolerance: DefaultEpislon,
}
x, y := t.Deg2Num()
t.X, t.Y = uint(x), uint(y)
t.Init()
return t
}
func (t *Tile) Init() {
max := 20037508.34
// resolution
res := (max * 2) / math.Exp2(float64(t.Z))
t.cached = true
t.extent = &geom.Extent{
-max + (float64(t.X) * res), // MinX
max - (float64(t.Y) * res), // Miny
-max + (float64(t.X) * res) + res, // MaxX
max - (float64(t.Y) * res) - res, // MaxY
}
t.xspan = t.extent.MaxX() - t.extent.MinX()
t.yspan = t.extent.MaxY() - t.extent.MinY()
/*
// This is how we can calculate it. But, it will always be a constant.
// So, we just return that constant.
// Where PixelBounds is : [4]float64{0.0, 0.0, t.Extent, t.Extent}
bounds, err = t.PixelBounds()
if err != nil {
return bounds, err
}
bounds[0][0] -= t.Buffer
bounds[0][1] -= t.Buffer
bounds[1][0] += t.Buffer
bounds[1][1] += t.Buffer
*/
t.bufpext = &geom.Extent{
0 - t.Buffer, 0 - t.Buffer,
t.Extent + t.Buffer, t.Extent + t.Buffer,
}
}
func (t *Tile) Deg2Num() (x, y int) {
x = int(math.Floor((t.Long + 180.0) / 360.0 * (math.Exp2(float64(t.Z)))))
y = int(math.Floor((1.0 - math.Log(math.Tan(t.Lat*math.Pi/180.0)+1.0/math.Cos(t.Lat*math.Pi/180.0))/math.Pi) / 2.0 * (math.Exp2(float64(t.Z)))))
return x, y
}
func (t *Tile) Num2Deg() (lat, lng float64) {
lat = Tile2Lat(uint64(t.Y), uint64(t.Z))
lng = Tile2Lon(uint64(t.X), uint64(t.Z))
return lat, lng
}
func Tile2Lon(x, z uint64) float64 { return float64(x)/math.Exp2(float64(z))*360.0 - 180.0 }
func Tile2Lat(y, z uint64) float64 {
var n float64 = math.Pi
if y != 0 {
n = math.Pi - 2.0*math.Pi*float64(y)/math.Exp2(float64(z))
}
return 180.0 / math.Pi * math.Atan(0.5*(math.Exp(n)-math.Exp(-n)))
}
// Bounds returns the bounds of the Tile as defined by the North most Longitude, East most Latitude, South most Longitude, West most Latitude.
func (t *Tile) Bounds() [4]float64 {
north := Tile2Lon(uint64(t.X), uint64(t.Z))
east := Tile2Lat(uint64(t.Y), uint64(t.Z))
south := Tile2Lon(uint64(t.X+1), uint64(t.Z))
west := Tile2Lat(uint64(t.Y+1), uint64(t.Z))
return [4]float64{north, east, south, west}
}
func toWebMercator(srid int, pt [2]float64) (npt [2]float64, err error) {
switch srid {
default:
return npt, UnknownConversionError
case WebMercator:
return pt, nil
case WGS84:
tnpt, err := webmercator.PToXY(pt[0], pt[1])
if err != nil {
return npt, err
}
return [2]float64{tnpt[0], tnpt[1]}, nil
}
}
func fromWebMercator(srid int, pt [2]float64) (npt [2]float64, err error) {
switch srid {
default:
return npt, UnknownConversionError
case WebMercator:
return pt, nil
case WGS84:
tnpt, err := webmercator.PToLonLat(pt[0], pt[1])
if err != nil {
return npt, err
}
return [2]float64{tnpt[0], tnpt[1]}, nil
}
}
func (t *Tile) ToPixel(srid int, pt [2]float64) (npt [2]float64, err error) {
spt, err := toWebMercator(srid, pt)
if err != nil {
return npt, err
}
nx := int64((spt[0] - t.extent.MinX()) * t.Extent / t.xspan)
ny := int64((spt[1] - t.extent.MinY()) * t.Extent / t.yspan)
return [2]float64{float64(nx), float64(ny)}, nil
}
func (t *Tile) FromPixel(srid int, pt [2]float64) (npt [2]float64, err error) {
x := float64(int64(pt[0]))
y := float64(int64(pt[1]))
wmx := (x * t.xspan / t.Extent) + t.extent.MinX()
wmy := (y * t.yspan / t.Extent) + t.extent.MinY()
return fromWebMercator(srid, [2]float64{wmx, wmy})
}
func (t *Tile) PixelBufferedBounds() (bounds [4]float64, err error) {
return t.bufpext.Extent(), nil
}
// Returns web mercator zoom level
func (t *Tile) ZLevel() uint {
return t.Z
}
// ZRes takes a web mercator zoom level and returns the pixel resolution for that
// scale, assuming t.Extent x t.Extent pixel tiles. Non-integer zoom levels are accepted.
// ported from: https://raw.githubusercontent.com/mapbox/postgis-vt-util/master/postgis-vt-util.sql
// 40075016.6855785 is the equator in meters for WGS84 at z=0
func (t *Tile) ZRes() float64 {
return 40075016.6855785 / (t.Extent * math.Exp2(float64(t.Z)))
}
// This is from Leafty
func (t *Tile) ZEpislon() float64 {
if t.Z == MaxZ {
return 0
}
epi := t.Tolerance
if epi <= 0 {
return 0
}
ext := t.Extent
denom := (math.Exp2(float64(t.Z)) * ext)
e := epi / denom
return e
}