Skip to content

Latest commit

 

History

History

java8-stream

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Stream

关于流

什么是流?

流是Java8引入的全新概念,它用来处理集合中的数据,暂且可以把它理解为一种高级集合。 众所周知,集合操作非常麻烦,若要对集合进行筛选、投影,需要写大量的代码,而流是以声明的形式操作集合,它就像SQL语句,我们只需告诉流需要对集合进行什么操作,它就会自动进行操作,并将执行结果交给你,无需我们自己手写代码。 因此,流的集合操作对我们来说是透明的,我们只需向流下达命令,它就会自动把我们想要的结果给我们。由于操作过程完全由Java处理,因此它可以根据当前硬件环境选择最优的方法处理,我们也无需编写复杂又容易出错的多线程代码了。

流的特点

  1. 只能遍历一次 我们可以把流想象成一条流水线,流水线的源头是我们的数据源(一个集合),数据源中的元素依次被输送到流水线上,我们可以在流水线上对元素进行各种操作。 一旦元素走到了流水线的另一头,那么这些元素就被“消费掉了”,我们无法再对这个流进行操作。当然,我们可以从数据源那里再获得一个新的流重新遍历一遍。
  2. 采用内部迭代方式 若要对集合进行处理,则需我们手写处理代码,这就叫做外部迭代。 而要对流进行处理,我们只需告诉流我们需要什么结果,处理过程由流自行完成,这就称为内部迭代。

流的操作种类

流的操作分为两种,分别为中间操作和终端操作。

  1. 中间操作 当数据源中的数据上了流水线后,这个过程对数据进行的所有操作都称为“中间操作”。 中间操作仍然会返回一个流对象,因此多个中间操作可以串连起来形成一个流水线。
  2. 终端操作 当所有的中间操作完成后,若要将数据从流水线上拿下来,则需要执行终端操作。 终端操作将返回一个执行结果,这就是你想要的数据。

流的操作过程

使用流一共需要三步:

  1. 准备一个数据源
  2. 执行中间操作 中间操作可以有多个,它们可以串连起来形成流水线。
  3. 执行终端操作 执行终端操作后本次流结束,你将获得一个执行结果。

使用流

创建流

在使用流之前,首先需要拥有一个数据源,并通过StreamAPI提供的一些方法获取该数据源的流对象。数据源可以有多种形式:

1. 集合

这种数据源较为常用,通过stream()方法即可获取流对象:

List<Person> list = new ArrayList<Person>(); 
Stream<Person> stream = list.stream();

2. 数组

通过Arrays类提供的静态函数stream()获取数组的流对象:

String[] names = {"chaimm","peter","john"};
Stream<String> stream = Arrays.stream(names);

3. 值

直接将几个值变成流对象:

Stream<String> stream = Stream.of("chaimm","peter","john");

4. 文件

try(Stream lines = Files.lines(Paths.get(“文件路径名”),Charset.defaultCharset())){
    //可对lines做一些操作
}catch(IOException e){
}

5. iterator

创建无限流

Stream.iterate(0, n -> n + 2)
      .limit(10)
      .forEach(System.out::println);

PS:Java7简化了IO操作,把打开IO操作放在try后的括号中即可省略关闭IO的代码。

筛选 filter

filter 函数接收一个Lambda表达式作为参数,该表达式返回boolean,在执行过程中,流将元素逐一输送给filter,并筛选出执行结果为true的元素。 如,筛选出所有学生:

List<Person> result = list.stream()
                    .filter(Person::isStudent)
                    .collect(toList());

去重distinct

去掉重复的结果:

List<Person> result = list.stream()
                    .distinct()
                    .collect(toList());

截取

截取流的前N个元素:

List<Person> result = list.stream()
                    .limit(3)
                    .collect(toList());

跳过

跳过流的前n个元素:

List<Person> result = list.stream()
                    .skip(3)
                    .collect(toList());

映射

对流中的每个元素执行一个函数,使得元素转换成另一种类型输出。流会将每一个元素输送给map函数,并执行map中的Lambda表达式,最后将执行结果存入一个新的流中。 如,获取每个人的姓名(实则是将Perosn类型转换成String类型):

List<Person> result = list.stream()
                    .map(Person::getName)
                    .collect(toList());

合并多个流

例:列出List中各不相同的单词,List集合如下:

List<String> list = new ArrayList<String>();
list.add("I am a boy");
list.add("I love the girl");
list.add("But the girl loves another girl");

思路如下:

首先将list变成流:

list.stream();

按空格分词:

list.stream()
            .map(line->line.split(" "));

分完词之后,每个元素变成了一个String[]数组。

将每个 String[] 变成流:

list.stream()
            .map(line->line.split(" "))
            .map(Arrays::stream)

此时一个大流里面包含了一个个小流,我们需要将这些小流合并成一个流。

将小流合并成一个大流:用 flatMap 替换刚才的 map

list.stream()
    .map(line->line.split(" "))
    .flatMap(Arrays::stream)

去重

list.stream()
    .map(line->line.split(" "))
    .flatMap(Arrays::stream)
    .distinct()
    .collect(toList());

是否匹配任一元素:anyMatch

anyMatch用于判断流中是否存在至少一个元素满足指定的条件,这个判断条件通过Lambda表达式传递给anyMatch,执行结果为boolean类型。 如,判断list中是否有学生:

boolean result = list.stream()
            .anyMatch(Person::isStudent);

是否匹配所有元素:allMatch

allMatch用于判断流中的所有元素是否都满足指定条件,这个判断条件通过Lambda表达式传递给anyMatch,执行结果为boolean类型。 如,判断是否所有人都是学生:

boolean result = list.stream()
            .allMatch(Person::isStudent);

是否未匹配所有元素:noneMatch

noneMatch与allMatch恰恰相反,它用于判断流中的所有元素是否都不满足指定条件:

boolean result = list.stream()
            .noneMatch(Person::isStudent);

获取任一元素findAny

findAny能够从流中随便选一个元素出来,它返回一个Optional类型的元素。

Optional<Person> person = list.stream().findAny();

获取第一个元素findFirst

Optional<Person> person = list.stream().findFirst();

归约

归约是将集合中的所有元素经过指定运算,折叠成一个元素输出,如:求最值、平均数等,这些操作都是将一个集合的元素折叠成一个元素输出。

在流中,reduce函数能实现归约。 reduce函数接收两个参数:

  1. 初始值
  2. 进行归约操作的Lambda表达式

元素求和:自定义Lambda表达式实现求和

例:计算所有人的年龄总和

int age = list.stream().reduce(0, (person1,person2)->person1.getAge()+person2.getAge());
  1. reduce的第一个参数表示初试值为0;
  2. reduce的第二个参数为需要进行的归约操作,它接收一个拥有两个参数的Lambda表达式,reduce会把流中的元素两两输给Lambda表达式,最后将计算出累加之和。

元素求和:使用Integer.sum函数求和

上面的方法中我们自己定义了Lambda表达式实现求和运算,如果当前流的元素为数值类型,那么可以使用Integer提供了sum函数代替自定义的Lambda表达式,如:

int age = list.stream().reduce(0, Integer::sum);

Integer类还提供了 minmax 等一系列数值操作,当流中元素为数值类型时可以直接使用。

数值流的使用

采用reduce进行数值操作会涉及到基本数值类型和引用数值类型之间的装箱、拆箱操作,因此效率较低。 当流操作为纯数值操作时,使用数值流能获得较高的效率。

将普通流转换成数值流

StreamAPI提供了三种数值流:IntStream、DoubleStream、LongStream,也提供了将普通流转换成数值流的三种方法:mapToInt、mapToDouble、mapToLong。 如,将Person中的age转换成数值流:

IntStream stream = list.stream().mapToInt(Person::getAge);

数值计算

每种数值流都提供了数值计算函数,如max、min、sum等。如,找出最大的年龄:

OptionalInt maxAge = list.stream()
                                .mapToInt(Person::getAge)
                                .max();

由于数值流可能为空,并且给空的数值流计算最大值是没有意义的,因此max函数返回OptionalInt,它是Optional的一个子类,能够判断流是否为空,并对流为空的情况作相应的处理。 此外,mapToInt、mapToDouble、mapToLong进行数值操作后的返回结果分别为:OptionalInt、OptionalDouble、OptionalLong

中间操作和收集操作

操作 类型 返回类型 使用的类型/函数式接口 函数描述符
filter 中间 Stream<T> Predicate<T> T -> boolean
distinct 中间 Stream<T>
skip 中间 Stream<T> long
map 中间 Stream<R> Function<T, R> T -> R
flatMap 中间 Stream<R> Function<T, Stream<R>> T -> Stream<R>
limit 中间 Stream<T> long
sorted 中间 Stream<T> Comparator<T> (T, T) -> int
anyMatch 终端 boolean Predicate<T> T -> boolean
noneMatch 终端 boolean Predicate<T> T -> boolean
allMatch 终端 boolean Predicate<T> T -> boolean
findAny 终端 Optional<T>
findFirst 终端 Optional<T>
forEach 终端 void Consumer<T> T -> void
collect 终端 R Collector<T, A, R>
reduce 终端 Optional<T> BinaryOperator<T> (T, T) -> T
count 终端 long

Collector 收集

Collectors 类的静态工厂方法

工厂方法 返回类型 用途 示例
toList List<T> 把流中所有项目收集到一个 List List<Project> projects = projectStream.collect(toList());
toSet Set<T> 把流中所有项目收集到一个 Set,删除重复项 Set<Project> projects = projectStream.collect(toSet());
toCollection Collection<T> 把流中所有项目收集到给定的供应源创建的集合 Collection<Project> projects = projectStream.collect(toCollection(), ArrayList::new);
counting Long 计算流中元素的个数 long howManyProjects = projectStream.collect(counting());
summingInt Integer 对流中项目的一个整数属性求和 int totalStars = projectStream.collect(summingInt(Project::getStars));
averagingInt Double 计算流中项目 Integer 属性的平均值 double avgStars = projectStream.collect(averagingInt(Project::getStars));
summarizingInt IntSummaryStatistics 收集关于流中项目 Integer 属性的统计值,例如最大、最小、 总和与平均值 IntSummaryStatistics projectStatistics = projectStream.collect(summarizingInt(Project::getStars));
joining String 连接对流中每个项目调用 toString 方法所生成的字符串 String shortProject = projectStream.map(Project::getName).collect(joining(", "));
maxBy Optional<T> 按照给定比较器选出的最大元素的 Optional, 或如果流为空则为 Optional.empty() Optional<Project> fattest = projectStream.collect(maxBy(comparingInt(Project::getStars)));
minBy Optional<T> 按照给定比较器选出的最小元素的 Optional, 或如果流为空则为 Optional.empty() Optional<Project> fattest = projectStream.collect(minBy(comparingInt(Project::getStars)));
reducing 归约操作产生的类型 从一个作为累加器的初始值开始,利用 BinaryOperator 与流中的元素逐个结合,从而将流归约为单个值 int totalStars = projectStream.collect(reducing(0, Project::getStars, Integer::sum));
collectingAndThen 转换函数返回的类型 包含另一个收集器,对其结果应用转换函数 int howManyProjects = projectStream.collect(collectingAndThen(toList(), List::size));
groupingBy Map<K, List<T>> 根据项目的一个属性的值对流中的项目作问组,并将属性值作 为结果 Map 的键 Map<String,List<Project>> projectByLanguage = projectStream.collect(groupingBy(Project::getLanguage));
partitioningBy Map<Boolean,List<T>> 根据对流中每个项目应用断言的结果来对项目进行分区 Map<Boolean,List<Project>> vegetarianDishes = projectStream.collect(partitioningBy(Project::isVegetarian));