This jar contains everything you need for a simple Oak installation.
The following runmodes are currently available:
* backup : Backup an existing Oak repository.
* restore : Restore a backup of an Oak repository.
* benchmark : Run benchmark tests against different Oak repository fixtures.
* debug : Print status information about an Oak repository.
* compact : Segment compaction on a TarMK repository.
* upgrade : Migrate existing Jackrabbit 2.x repository to Oak.
* server : Run the Oak Server.
* console : Start an interactive console.
* explore : Starts a GUI browser based on java swing.
* primary : Run a TarMK Cold Standby primary instance
* standby : Run a TarMK Cold Standby standby instance
* scalability : Run scalability tests against different Oak repository fixtures.
* recovery : Run a _lastRev recovery on a MongoMK repository
* checkpoints : Manage checkpoints
* help : Print a list of available runmodes
Some of the features related to Jackrabbit 2.x are provided by oak-run-jr2 jar. See the Oak Runnable JR2 section for more details.
See the subsections below for more details on how to use these modes.
The 'backup' mode creates a backup from an existing oak repository. To start this mode, use:
$ java -jar oak-run-*.jar backup \
{ /path/to/oak/repository | mongodb://host:port/database } /path/to/backup
The 'restore' mode imports a backup of an existing oak repository. To start this mode, use:
$ java -jar oak-run-*.jar restore \
{ /path/to/oak/repository | mongodb://host:port/database } /path/to/backup
The 'debug' mode allows to obtain information about the status of the specified store. Currently this is only supported for the TarMK. To start this mode, use:
$ java -jar oak-run-*.jar debug /path/to/oak/repository [id...]
The 'console' mode allows to work with an interactive console and browse an existing oak repository. Type ':help' within the console to get a list of all supported commands. The console currently supports TarMK and MongoMK. To start the console for a TarMK repository, use:
$ java -jar oak-run-*.jar console /path/to/oak/repository
To start the console for a MongoMK repository, use:
$ java -jar oak-run-*.jar console mongodb://host
Console is based on Groovy Shell and hence one
can use all Groovy constructs. It also exposes the org.apache.jackrabbit.oak.console.ConsoleSession
instance as through session
variable. For example when using SegmentNodeStore you can
dump the current segment info to a file
> new File("segment.txt") << session.workingNode.segment.toString()
In above case the workingNode
captures the current NodeState
which in case of
Segment/TarMK is SegmentNodeState
You can also load external script at launch time via passing an extra argument as shown below
$ java -jar oak-run-*.jar console mongodb://host ":load /path/to/script.groovy"
The 'explore' mode starts a desktop browser GUI based on java swing which allows for read-only browsing of an existing oak repository.
$ java -jar oak-run-*.jar explore /path/to/oak/repository [skip-size-check]
The 'primary' mode starts a TarMK Cold Standby primary instance (master) listening on a TCP/IP port for connecting slaves.
$ java -jar oak-run-*.jar primary [options] /path/to/TarMK
The following options are available:
--port 8023 - port to listen at
--admissible 127.0.0.1 - admissible client IP range or host name
--secure - use secure connections
The 'standby' mode starts a TarMK Cold Standby standby instance (slave) to create or update a continuous backup from a Cold Standby primary.
$ java -jar oak-run-*.jar standby [options] /path/to/TarMK
The following options are available:
--port 8023 - port to connect to
--host 127.0.0.1 - host to connect to
--secure - use secure connections
--interval 5 - schedule the slave to run continuously, connecting every n seconds
The 'compact' mode runs the segment compaction operation on the provided TarMK repository. To start this mode, use:
$ java -jar oak-run-*.jar compact /path/to/TarMK
The 'checkpoints' mode can be used to list or remove repository checkpoints To start this mode, use:
$ java -jar oak-run-*.jar checkpoints /path/to/oak/repository [list|rm-all|rm-unreferenced|rm <checkpoint>]
The 'list' option (treated as a default when nothing is specified) will list all existing checkpoints. The 'rm-all' option will wipe clean the 'checkpoints' node. The 'rm-unreferenced' option will remove all checkpoints except the one referenced from the async indexer (/:async@async). The 'rm ' option will remove a specific checkpoint from the repository.
The 'upgrade' mode allows to migrate the contents of an existing Jackrabbit 2.x repository to Oak. To run the migration, use:
$ java -jar oak-run-*.jar upgrade [--datastore] \
/path/to/jackrabbit/repository [/path/to/jackrabbit/repository.xml] \
{ /path/to/oak/repository | mongodb://host:port/database }
The source repository is opened from the given repository directory, and
should not be concurrently accessed by any other client. Repository
configuration is read from the specified configuration file, or from
a repository.xml
file within the repository directory if an explicit
configuration file is not given.
The target repository is specified either as a local filesystem path to a directory (which will be automatically created if it doesn't already exist) of a new TarMK repository or as a MongoDB client URI that specifies the location of a MongoDB database where a new DocumentMK repository.
The --datastore
option (if present) prevents the copying of binary data
from a data store of the source repository to the target Oak repository.
Instead the binaries are copied by reference, and you need to make the
source data store available to the new Oak repository.
The content migration will automatically adjust things like node type, privilege and user account settings that work a bit differently in Oak. Unsupported features like same-name-siblings are migrated on a best-effort basis, with no strict guarantees of completeness. Warnings will be logged for any content inconsistencies that might be encountered; such content should be manually reviewed after the migration is complete. Note that things like search index configuration work differently in Oak than in Jackrabbit 2.x, and will need to be manually recreated after the migration. See the relevant documentation for more details.
The Oak server mode starts a MicroKernel or full Oak instance with the
standard JCR plugins and makes it available over a simple HTTP mapping
defined in the oak-http
and oak-mk-remote
components. To start this
mode, use:
$ java -jar oak-run-*.jar server [uri] [fixture] [options]
If no arguments are specified, the command starts an in-memory repository
and makes it available at http://localhost:8080/. Specify an uri
and a
fixture
argument to change the host name and port and specify a different
repository backend.
The optional fixture argument allows to specify the repository implementation to be used. The following fixtures are currently supported:
Fixture | Description |
---|---|
Jackrabbit(*) | Jackrabbit with the default embedded Derby bundle PM |
Oak-Memory | Oak with default in-memory storage |
Oak-MemoryNS | Oak with default in-memory NodeStore |
Oak-Mongo | Oak with the default Mongo backend |
Oak-Mongo-FDS | Oak with the default Mongo backend and FileDataStore |
Oak-MongoNS | Oak with the Mongo NodeStore |
Oak-MongoMK | Oak with the Mongo MicroKernel |
Oak-Tar | Oak with the Tar backend (aka Segment NodeStore) |
Oak-Tar-FDS | Oak with the Tar backend and FileDataStore |
Jackrabbit fixture requires Oak Runnable JR2 jar
Depending on the fixture the following options are available:
--cache 100 - cache size (in MB)
--host localhost - MongoDB host
--port 27101 - MongoDB port
--db <name> - MongoDB database (default is a generated name)
--clusterIds - Cluster Ids for the Mongo setup: a comma separated list of integers
--base <file> - Tar: Path to the base file
--mmap <64bit?> - TarMK memory mapping (the default on 64 bit JVMs)
--mk - Start in MicroKernel mode exposing the MicroKernel API
Examples:
$ java -jar oak-run-*.jar server
$ java -jar oak-run-*.jar server -mk
$ java -jar oak-run-*.jar server http://localhost:4503 Oak-Tar --base myOak
$ java -jar oak-run-*.jar server http://localhost:4502 Oak-Mongo --db myOak --clusterIds c1,c2,c3
See the documentation in the oak-http
and oak-mk-remote
components for details
about the available functionality.
The benchmark mode is used for executing various micro-benchmarks. It can be invoked like this:
$ java -jar oak-run-*.jar benchmark [options] [testcases] [fixtures]
The following benchmark options (with default values) are currently supported:
--host localhost - MongoDB host
--port 27101 - MongoDB port
--db <name> - MongoDB database (default is a generated name)
--dropDBAfterTest true - Whether to drop the MongoDB database after the test
--base target - Path to the base file (Tar setup),
--mmap <64bit?> - TarMK memory mapping (the default on 64 bit JVMs)
--cache 100 - cache size (in MB)
--wikipedia <file> - Wikipedia dump
--runAsAdmin false - Run test as admin session
--itemsToRead 1000 - Number of items to read
--report false - Whether to output intermediate results
--csvFile <file> - Optional csv file to report the benchmark results
--concurrency <levels> - Comma separated list of concurrency levels
--rdbjdbcuri - JDBC URL for RDB persistence (defaults to local file-based H2)
--rdbjdbcuser - JDBC username (defaults to "")
--rdbjdbcpasswd - JDBC password (defaults to "")
These options are passed to the test cases and repository fixtures that need them. For example the Wikipedia dump option is needed by the WikipediaImport test case and the MongoDB address information by the MongoMK and SegmentMK -based repository fixtures. The cache setting controls the bundle cache size in Jackrabbit, the KernelNodeState cache size in MongoMK, and the segment cache size in SegmentMK.
The --concurrency
levels can be specified as comma separated list of values,
eg: --concurrency 1,4,8
, which will execute the same test with the number of
respective threads. Note that the beforeSuite()
and afterSuite()
are executed
before and after the concurrency loop. eg. in the example above, the execution order
is: beforeSuite()
, 1x runTest()
, 4x runTest()
, 8x runTest()
, afterSuite()
.
Tests that create their own background threads, should be executed with
--concurrency 1
which is the default.
You can use extra JVM options like -Xmx
settings to better control the
benchmark environment. It's also possible to attach the JVM to a
profiler to better understand benchmark results. For example, I'm
using -agentlib:hprof=cpu=samples,depth=100
as a basic profiling
tool, whose results can be processed with perl analyze-hprof.pl java.hprof.txt
to produce a somewhat easier-to-read top-down and
bottom-up summaries of how the execution time is distributed across
the benchmarked codebase.
Some system properties are also used to control the benchmarks. For example:
-Dwarmup=5 - warmup time (in seconds)
-Druntime=60 - how long a single benchmark should run (in seconds)
-Dprofile=true - to collect and print profiling data
The test case names like ReadPropertyTest
, SmallFileReadTest
and
SmallFileWriteTest
indicate the specific test case being run. You can
specify one or more test cases in the benchmark command line, and
oak-run will execute each benchmark in sequence. The benchmark code is
located under org.apache.jackrabbit.oak.benchmark
in the oak-run
component. Each test case tries to exercise some tightly scoped aspect
of the repository. You might remember many of these tests from the
Jackrabbit benchmark reports like
http://people.apache.org/~jukka/jackrabbit/report-2011-09-27/report.html
that we used to produce earlier.
Finally the benchmark runner supports the following repository fixtures:
Fixture | Description |
---|---|
Jackrabbit | Jackrabbit with the default embedded Derby bundle PM |
Oak-Memory | Oak with default in-memory storage |
Oak-MemoryNS | Oak with default in-memory NodeStore |
Oak-Mongo | Oak with the default Mongo backend |
Oak-Mongo-FDS | Oak with the default Mongo backend and FileDataStore |
Oak-MongoNS | Oak with the Mongo NodeStore |
Oak-MongoMK | Oak with the Mongo MicroKernel |
Oak-Tar | Oak with the Tar backend (aka Segment NodeStore) |
Oak-RDB | Oak with the DocumentMK/RDB persistence |
(Note that for Oak-RDB, the required JDBC drivers either need to be embedded into oak-run, or be specified separately in the class path.)
Once started, the benchmark runner will execute each listed test case against all the listed repository fixtures. After starting up the repository and preparing the test environment, the test case is first executed a few times to warm up caches before measurements are started. Then the test case is run repeatedly for one minute and the number of milliseconds used by each execution is recorded. Once done, the following statistics are computed and reported:
Column | Description |
---|---|
C | concurrency level |
min | minimum time (in ms) taken by a test run |
10% | time (in ms) in which the fastest 10% of test runs |
50% | time (in ms) taken by the median test run |
90% | time (in ms) in which the fastest 90% of test runs |
max | maximum time (in ms) taken by a test run |
N | total number of test runs in one minute (or more) |
The most useful of these numbers is probably the 90% figure, as it shows the time under which the majority of test runs completed and thus what kind of performance could reasonably be expected in a normal usage scenario. However, the reason why all these different numbers are reported, instead of just the 90% one, is that often seeing the distribution of time across test runs can be helpful in identifying things like whether a bigger cache might help.
Finally, and most importantly, like in all benchmarking, the numbers produced by these tests should be taken with a large dose of salt. They DO NOT directly indicate the kind of application performance you could expect with (the current state of) Oak. Instead they are designed to isolate implementation-level bottlenecks and to help measure and profile the performance of specific, isolated features.
To add a new test case to this benchmark suite, you'll need to implement
the Benchmark
interface and add an instance of the new test to the
allBenchmarks
array in the BenchmarkRunner
class in the
org.apache.jackrabbit.oak.benchmark
package.
The best way to implement the Benchmark
interface is to extend the
AbstractTest
base class that takes care of most of the benchmarking
details. The outline of such a benchmark is:
class MyTest extends AbstracTest {
@Override
protected void beforeSuite() throws Exception {
// optional, run once before all the iterations,
// not included in the performance measurements
}
@Override
protected void beforeTest() throws Exception {
// optional, run before runTest() on each iteration,
// but not included in the performance measurements
}
@Override
protected void runTest() throws Exception {
// required, run repeatedly during the benchmark,
// and the time of each iteration is measured.
// The ideal execution time of this method is
// from a few hundred to a few thousand milliseconds.
// Use a loop if the operation you're hoping to measure
// is faster than that.
}
@Override
protected void afterTest() throws Exception {
// optional, run after runTest() on each iteration,
// but not included in the performance measurements
}
@Override
protected void afterSuite() throws Exception {
// optional, run once after all the iterations,
// not included in the performance measurements
}
}
The rough outline of how the benchmark will be run is:
test.beforeSuite();
for (...) {
test.beforeTest();
recordStartTime();
test.runTest();
recordEndTime();
test.afterTest();
}
test.afterSuite();
You can use the loginWriter()
and loginReader()
methods to create admin
and anonymous sessions. There's no need to logout those sessions (unless doing
so is relevant to the benchmark) as they will automatically be closed after
the benchmark is completed and the afterSuite()
method has been called.
Similarly, you can use the addBackgroundJob(Runnable)
method to add
background tasks that will be run concurrently while the main benchmark is
executing. The relevant background thread works like this:
while (running) {
runnable.run();
Thread.yield();
}
As you can see, the run()
method of the background task gets invoked
repeatedly. Such threads will automatically close once all test iterations
are done, before the afterSuite()
method is called.
The scalability mode is used for executing various scalability suites to test the performance of various associated tests. It can be invoked like this:
$ java -jar oak-run-*.jar scalability [options] [suites] [fixtures]
The following scalability options (with default values) are currently supported:
--host localhost - MongoDB host
--port 27101 - MongoDB port
--db <name> - MongoDB database (default is a generated name)
--dropDBAfterTest true - Whether to drop the MongoDB database after the test
--base target - Path to the base file (Tar setup),
--mmap <64bit?> - TarMK memory mapping (the default on 64 bit JVMs)
--cache 100 - cache size (in MB)
--csvFile <file> - Optional csv file to report the benchmark results
--rdbjdbcuri - JDBC URL for RDB persistence (defaults to local file-based H2)
--rdbjdbcuser - JDBC username (defaults to "")
--rdbjdbcpasswd - JDBC password (defaults to "")
These options are passed to the various suites and repository fixtures that need them. For example the the MongoDB address information by the MongoMK and SegmentMK -based repository fixtures. The cache setting controls the KernelNodeState cache size in MongoMK, and the segment cache size in SegmentMK.
You can use extra JVM options like -Xmx
settings to better control the
scalability suite test environment. It's also possible to attach the JVM to a
profiler to better understand benchmark results. For example, I'm
using -agentlib:hprof=cpu=samples,depth=100
as a basic profiling
tool, whose results can be processed with perl analyze-hprof.pl java.hprof.txt
to produce a somewhat easier-to-read top-down and
bottom-up summaries of how the execution time is distributed across
the benchmarked codebase.
The scalability suite creates the relevant repository load before starting the tests. Each test case tries to benchmark and profile a specific aspect of the repository.
Each scalability suite is configured to run a number of related tests which require the
same base load to be available in the repository.
Either the entire suite can be executed or individual tests within the suite can be run.
If the suite names are specified like ScalabilityBlobSearchSuite
then all the tests
configured for the suite are executed. To execute particular tests in the
suite, suite names appended with tests of the form suite:test1,test2
must be specified like
ScalabilityBlobSearchSuite:FormatSearcher,NodeTypeSearcher
. You can specify one or more
suites in the scalability command line, and oak-run will execute each suite in sequence.
Finally the scalability runner supports the following repository fixtures:
Fixture | Description |
---|---|
Oak-Memory | Oak with default in-memory storage |
Oak-MemoryNS | Oak with default in-memory NodeStore |
Oak-Mongo | Oak with the default Mongo backend |
Oak-Mongo-FDS | Oak with the default Mongo backend and FileDataStore |
Oak-MongoNS | Oak with the Mongo NodeStore |
Oak-MongoMK | Oak with the Mongo MicroKernel |
Oak-Tar | Oak with the Tar backend (aka Segment NodeStore) |
Oak-RDB | Oak with the DocumentMK/RDB persistence |
(Note that for Oak-RDB, the required JDBC drivers either need to be embedded into oak-run, or be specified separately in the class path.)
Once started, the scalability runner will execute each listed suite against all the listed repository fixtures. After starting up the repository and preparing the test environment, the scalability suite executes all the configured tests to warm up caches before measurements are started. Then each configured test within the suite are run and the number of milliseconds used by each execution is recorded. Once done, the following statistics are computed and reported:
Column | Description |
---|---|
min | minimum time (in ms) taken by a test run |
10% | time (in ms) in which the fastest 10% of test runs |
50% | time (in ms) taken by the median test run |
90% | time (in ms) in which the fastest 90% of test runs |
max | maximum time (in ms) taken by a test run |
N | total number of test runs in one minute (or more) |
Also, for each test, the execution times are reported for each iteration/load configured.
Column | Description |
---|---|
Load | time (in ms) taken by a test run |
The latter is more useful of these numbers as it shows how the individual execution times are scaling for each load.
The scalability code is
located under org.apache.jackrabbit.oak.scalabiity
in the oak-run
component.
To add a new scalability suite, you'll need to implement
the ScalabilitySuite
interface and add an instance of the new suite to the
allSuites
array in the ScalabilityRunner
class, along with the test benchmarks,
in the org.apache.jackrabbit.oak.scalability
package.
To implement the test benchmarks, it is required to extend the ScalabilityBenchmark
abstract class and implement the execute()
method.
The best way to implement the ScalabilitySuite
interface is to extend the
ScalabilityAbstractSuite
base class that takes care of most of the benchmarking
details. The outline of such a suite is:
class MyTestSuite extends ScalabilityAbstractSuite {
@Override
protected void beforeSuite() throws Exception {
// optional, run once before all the iterations,
// not included in the performance measurements
}
@Override
protected void beforeIteration(ExecutionContext) throws Exception {
// optional, Typically, this can be configured to create additional
// loads for each iteration.
// This method will be called before each test iteration begins
}
@Override
protected void executeBenchmark(ScalabilityBenchmark benchmark,
ExecutionContext context) throws Exception {
// required, executes the specified benchmark
}
@Override
protected void afterIteration() throws Exception {
// optional, executed after runIteration(),
// but not included in the performance measurements
}
@Override
protected void afterSuite() throws Exception {
// optional, run once after all the iterations are complete,
// not included in the performance measurements
}
}
The rough outline of how the individual suite will be run is:
test.beforeSuite();
for (iteration...) {
test.beforeIteration();
for (benchmarks...) {
recordStartTime();
test.executeBenchmark();
recordEndTime();
}
test.afterIteration();
}
test.afterSuite();
You can specify any context information to the test benchmarks using the ExecutionContext
object passed as parameter to the beforeIteration()
and the executeBenchmark()
methods.
ExecutionBenchmark
exposes two methods getMap()
and setMap()
which can be used to
pass context information.
You can use the loginWriter()
and loginReader()
methods to create admin
and anonymous sessions. There's no need to logout those sessions (unless doing
so is relevant to the test) as they will automatically be closed after
the suite is complete and the afterSuite()
method has been called.
Similarly, you can use the addBackgroundJob(Runnable)
method to add
background tasks that will be run concurrently while the test benchmark is
executing. The relevant background thread works like this:
while (running) {
runnable.run();
Thread.yield();
}
As you can see, the run()
method of the background task gets invoked
repeatedly. Such threads will automatically close once all test iterations
are done, before the afterSuite()
method is called.
ScalabilityAbstractSuite
defines some system properties which are used to control the
suites extending from it :
-Dincrements=10,100,1000,1000 - defines the varying loads for each test iteration
-Dprofile=true - to collect and print profiling data
-Ddebug=true - to output any intermediate results during the suite
run
The recovery mode can be used to check the consistency of _lastRev
fields
of a MongoMK repository. It can be invoked like this:
$ java -jar oak-run-*.jar recovery [options] mongodb://host:port/database [dryRun]
The following recovery options (with default values) are currently supported:
--clusterId - MongoMK clusterId (default: 0 -> automatic)
The recovery tool will only perform the check and fix for the given clusterId.
It is therefore recommended to explicitly specify a clusterId. The tool will
fix the documents it identified, unless the dryRun
keyword is specified.
This jar provides Jackrabbit 2.x related features
The following runmodes are currently available:
* upgrade : Upgrade from Jackrabbit 2.x repository to Oak.
* benchmark : Run benchmark tests against Jackrabbit 2.x repository fixture.
* server : Run the JR2 Server.
To simplify making sense of data created by Oak in Mongo a javascript file oak-mongo.js is provided. It includes some useful function to navigate the data in Mongo
$ wget https://svn.apache.org/repos/asf/jackrabbit/oak/trunk/oak-run/src/main/js/oak-mongo.js
$ mongo localhost/oak --shell oak-mongo.js
MongoDB shell version: 2.6.3
connecting to: localhost/oak
type "help" for help
> oak.countChildren('/oak:index/')
356787
> oak.getChildStats('/oak:index')
{ "count" : 356788, "size" : 127743372, "simple" : "121.83 MB" }
> oak.getChildStats('/')
{ "count" : 593191, "size" : 302005011, "simple" : "288.01 MB" }
>
For reporting any issue related to Oak the script provides a function to collect important stats and can be dumped to a file
$ mongo localhost/oak --eval "load('/path/to/oak-mongo.js');printjson(oak.systemStats());" --quiet > oak-stats.json