forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetectNet.h
182 lines (155 loc) · 7.13 KB
/
detectNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __DETECT_NET_H__
#define __DETECT_NET_H__
#include "tensorNet.h"
/**
* Name of default input blob for detectNet model.
* @ingroup deepVision
*/
#define DETECTNET_DEFAULT_INPUT "data"
/**
* Name of default output blob of the coverage map for detectNet model.
* @ingroup deepVision
*/
#define DETECTNET_DEFAULT_COVERAGE "coverage"
/**
* Name of default output blob of the grid of bounding boxes for detectNet model.
* @ingroup deepVision
*/
#define DETECTNET_DEFAULT_BBOX "bboxes"
/**
* Object recognition and localization networks with TensorRT support.
* @ingroup deepVision
*/
class detectNet : public tensorNet
{
public:
/**
* Network choice enumeration.
*/
enum NetworkType
{
COCO_AIRPLANE = 0, /**< MS-COCO airplane class */
COCO_BOTTLE, /**< MS-COCO bottle class */
COCO_CHAIR, /**< MS-COCO chair class */
COCO_DOG, /**< MS-COCO dog class */
FACENET, /**< Human facial detector trained on FDDB */
PEDNET, /**< Pedestrian / person detector */
PEDNET_MULTI /**< Multi-class pedestrian + baggage detector */
};
/**
* Load a new network instance
* @param networkType type of pre-supported network to load
* @param threshold default minimum threshold for detection
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static detectNet* Create( NetworkType networkType=PEDNET_MULTI, float threshold=0.5f, uint32_t maxBatchSize=2 );
/**
* Load a custom network instance
* @param prototxt_path File path to the deployable network prototxt
* @param model_path File path to the caffemodel
* @param mean_binary File path to the mean value binary proto
* @param threshold default minimum threshold for detection
* @param input Name of the input layer blob.
* @param coverage Name of the output coverage classifier layer blob, which contains the confidence values for each bbox.
* @param bboxes Name of the output bounding box layer blob, which contains a grid of rectangles in the image.
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static detectNet* Create( const char* prototxt_path, const char* model_path, const char* mean_binary, float threshold=0.5f,
const char* input = DETECTNET_DEFAULT_INPUT,
const char* coverage = DETECTNET_DEFAULT_COVERAGE,
const char* bboxes = DETECTNET_DEFAULT_BBOX,
uint32_t maxBatchSize=2 );
/**
* Load a custom network instance
* @param prototxt_path File path to the deployable network prototxt
* @param model_path File path to the caffemodel
* @param mean_pixel Input transform subtraction value (use 0.0 if the network already does this)
* @param threshold default minimum threshold for detection
* @param input Name of the input layer blob.
* @param coverage Name of the output coverage classifier layer blob, which contains the confidence values for each bbox.
* @param bboxes Name of the output bounding box layer blob, which contains a grid of rectangles in the image.
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static detectNet* Create( const char* prototxt_path, const char* model_path, float mean_pixel=0.0f, float threshold=0.5f,
const char* input = DETECTNET_DEFAULT_INPUT,
const char* coverage = DETECTNET_DEFAULT_COVERAGE,
const char* bboxes = DETECTNET_DEFAULT_BBOX,
uint32_t maxBatchSize=2 );
/**
* Load a new network instance by parsing the command line.
*/
static detectNet* Create( int argc, char** argv );
/**
* Destory
*/
virtual ~detectNet();
/**
* Detect object locations in the RGBA image.
* @param rgba float4 RGBA input image in CUDA device memory.
* @param width width of the input image in pixels.
* @param height height of the input image in pixels.
* @param numBoxes pointer to a single integer containing the maximum number of boxes available in boundingBoxes.
* upon successful return, will be set to the number of bounding boxes detected in the image.
* @param boundingBoxes pointer to array of bounding boxes.
* @param confidence optional pointer to float2 array filled with a (confidence, class) pair for each bounding box (numBoxes)
* @returns True if the image was processed without error, false if an error was encountered.
*/
bool Detect( float* rgba, uint32_t width, uint32_t height, float* boundingBoxes, int* numBoxes, float* confidence=NULL );
/**
* Draw bounding boxes in the RGBA image.
* @param input float4 RGBA input image in CUDA device memory.
* @param output float4 RGBA output image in CUDA device memory.
*/
bool DrawBoxes( float* input, float* output, uint32_t width, uint32_t height, const float* boundingBoxes, int numBoxes, int classIndex=0 );
/**
* Retrieve the minimum threshold for detection.
* TODO: change this to per-class in the future
*/
inline float GetThreshold() const { return mCoverageThreshold; }
/**
* Set the minimum threshold for detection.
*/
inline void SetThreshold( float threshold ) { mCoverageThreshold = threshold; }
/**
* Retrieve the maximum number of bounding boxes the network supports.
* Knowing this is useful for allocating the buffers to store the output bounding boxes.
*/
inline uint32_t GetMaxBoundingBoxes() const { return DIMS_W(mOutputs[1].dims) * DIMS_H(mOutputs[1].dims) * DIMS_C(mOutputs[1].dims); }
/**
* Retrieve the number of object classes supported in the detector
*/
inline uint32_t GetNumClasses() const { return DIMS_C(mOutputs[0].dims); }
/**
* Set the visualization color of a particular class of object.
*/
void SetClassColor( uint32_t classIndex, float r, float g, float b, float a=255.0f );
protected:
// constructor
detectNet();
bool defaultColors();
float mCoverageThreshold;
float* mClassColors[2];
float mMeanPixel;
};
#endif