-
Notifications
You must be signed in to change notification settings - Fork 67
/
augmentations.py
189 lines (154 loc) · 7.32 KB
/
augmentations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import torch
import torchvision
import numpy as np
import random
import PIL
from PIL import Image
from skimage import img_as_ubyte, img_as_float
import warnings
import numbers
class RandomCrop(object):
"""Extract random crop at the same location for a list of videos
Args:
size (sequence or int): Desired output size for the
crop in format (h, w)
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
size = (size, size)
self.size = size
def __call__(self, img_source, img_target):
"""
Args:
img (PIL.Image or numpy.ndarray): List of videos to be cropped
in format (h, w, c) in numpy.ndarray
Returns:
PIL.Image or numpy.ndarray: Cropped list of videos
"""
h, w = self.size
if isinstance(img_source, np.ndarray):
im_h, im_w, im_c = img_source.shape
elif isinstance(img_source, PIL.Image.Image):
im_w, im_h = img_source.size
else:
raise TypeError('Expected numpy.ndarray or PIL.Image but got {0}'.format(type(img_source)))
x1 = 0 if h == im_h else random.randint(0, im_w - w)
y1 = 0 if w == im_w else random.randint(0, im_h - h)
if isinstance(img_source, np.ndarray):
img_source_crop = img_source[y1:y1 + h, x1:x1 + w, :]
img_target_crop = img_target[y1:y1 + h, x1:x1 + w, :]
elif isinstance(img_source, PIL.Image.Image):
img_source_crop = img_source.crop((x1, y1, x1 + w, y1 + h))
img_target_crop = img_target.crop((x1, y1, x1 + w, y1 + h))
else:
raise TypeError('Expected numpy.ndarray or PIL.Image but got {0}'.format(type(img_source)))
return img_source_crop, img_target_crop
class RandomFlip(object):
def __init__(self, horizontal_flip=True):
self.horizontal_flip = horizontal_flip
def __call__(self, img_source, img_target):
if random.random() < 0.5 and self.horizontal_flip:
# return np.fliplr(img_source), np.fliplr(img_target)
return img_source.transpose(PIL.Image.FLIP_LEFT_RIGHT), img_target.transpose(PIL.Image.FLIP_LEFT_RIGHT)
return img_source, img_target
class ColorJitter(object):
"""Randomly change the brightness, contrast and saturation and hue of the clip
Args:
brightness (float): How much to jitter brightness. brightness_factor
is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
contrast (float): How much to jitter contrast. contrast_factor
is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
saturation (float): How much to jitter saturation. saturation_factor
is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
hue(float): How much to jitter hue. hue_factor is chosen uniformly from
[-hue, hue]. Should be >=0 and <= 0.5.
"""
def __init__(self, brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
def get_params(self, brightness, contrast, saturation, hue):
if brightness > 0:
brightness_factor = random.uniform(
max(0, 1 - brightness), 1 + brightness)
else:
brightness_factor = None
if contrast > 0:
contrast_factor = random.uniform(
max(0, 1 - contrast), 1 + contrast)
else:
contrast_factor = None
if saturation > 0:
saturation_factor = random.uniform(
max(0, 1 - saturation), 1 + saturation)
else:
saturation_factor = None
if hue > 0:
hue_factor = random.uniform(-hue, hue)
else:
hue_factor = None
return brightness_factor, contrast_factor, saturation_factor, hue_factor
def __call__(self, img_source, img_target):
"""
Args:
clip (list): list of PIL.Image
Returns:
list PIL.Image : list of transformed PIL.Image
"""
if isinstance(img_source, np.ndarray):
brightness, contrast, saturation, hue = self.get_params(self.brightness, self.contrast, self.saturation,
self.hue)
# Create img transform function sequence
img_transforms = []
if brightness is not None:
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness))
if saturation is not None:
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation))
if hue is not None:
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue))
if contrast is not None:
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast))
random.shuffle(img_transforms)
img_transforms = [img_as_ubyte, torchvision.transforms.ToPILImage()] + img_transforms + [np.array,
img_as_float]
with warnings.catch_warnings():
warnings.simplefilter("ignore")
for func in img_transforms:
jittered_source = func(img_source).astype('float32')
jittered_target = func(img_target).astype('float32')
elif isinstance(img_source, PIL.Image.Image):
brightness, contrast, saturation, hue = self.get_params(self.brightness, self.contrast, self.saturation,
self.hue)
# Create img transform function sequence
img_transforms = []
if brightness is not None:
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness))
if saturation is not None:
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation))
if hue is not None:
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue))
if contrast is not None:
img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast))
random.shuffle(img_transforms)
# Apply to all videos
for func in img_transforms:
jittered_source = func(img_source)
jittered_target = func(img_target)
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
'but got list of {0}'.format(type(img_source)))
return jittered_source, jittered_target
class AugmentationTransform:
def __init__(self, crop, flip, jitter):
self.transforms = []
if crop:
self.transforms.append(RandomCrop(224))
if flip:
self.transforms.append(RandomFlip(True))
if jitter:
self.transforms.append(ColorJitter(0.1, 0.1, 0.1, 0.1))
def __call__(self, img_source, img_target):
for t in self.transforms:
img_source, img_target = t(img_source, img_target)
return img_source, img_target