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Strongly convex constrained minimization:
O(log(1/ε)) steps

Theorem

Let f : Rd → R be convex and differentiable. Let X ⊆ Rd be a
closed and convex set and suppose that f is smooth over X with
parameter L and strongly convex over X with parameter µ > 0.
Choosing

γ :=
1

L
,

projected gradient descent with arbitrary x0 satisfies

(i)

‖xt+1 − x?‖2 ≤
(

1− µ

L

)
‖xt − x?‖2, t ≥ 0.

(ii)

f(xt)− f(x?) ≤ L

2

(
1− µ

L

)t
‖x0 − x?‖2.
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Strongly convex constrained minimization:
O(log(1/ε)) steps

Proof.

Strengthen the “constrained” vanilla bound

1

2γ

(
γ2‖∇f(xt)‖2+‖xt−x?‖2−‖x+−x?‖2 − ‖y+−x+‖2

)
to

1

2γ

(
γ2‖∇f(xt)‖2+‖xt−x?‖2−‖x+−x?‖2 − ‖y+−x+‖2

)
−µ

2
‖xt − x?‖2

using strong convexity.

Then proceed as in the unconstrained theorem.
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Projecting onto `1-balls

X = B1(R) :=
{
x ∈ Rd : ‖x‖1 =

d∑
i=1

|xi| ≤ R
}

X = B1(R)
v

0 R

ΠX(v)

2d facets!
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Projecting onto `1-balls

w.l.o.g.

I R = 1, (*)

I vi ≥ 0 for all i,

I
∑d

i=1 vi > 1.

And using this,

x = ΠX(v) satisfies xi ≥ 0 for all i and
∑d

i=1 xi = 1.
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Projecting onto `1-balls

Corollary

Under our assumption (*),

ΠX(v) = argmin
x∈∆d

‖x− v‖2,

where

∆d :=
{
x ∈ Rd :

d∑
i=1

xi = 1, xi ≥ 0 ∀i
}

is the standard simplex.

Also, w.l.o.g. assume that v is ordered increasingly,
v1 ≥ v2 ≥ · · · ≥ vd.
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Projecting onto `1-balls

Lemma

Let x? := argminx∈∆d
‖x− v‖2, and v ordered increasingly. There

exists (a unique) index p ∈ {1, . . . , d} s.t.

x?i > 0, i ≤ p,
x?i = 0, i > p.

Proof.

Optimality criterion for constrained optimization:

∇dv(x?)>(x− x?) = 2(x? − v)>(x− x?) ≥ 0, ∀x ∈ ∆d.

∃ a positive entry in x? (because
∑d

i=1 x
?
i = 1).

Why not x?i = 0 and x?i+1 > 0? If so, we could decrease x?i+1 by ε
and increase x?i to ε to obtain x ∈ ∆d s.t.

(x?−v)>(x−x?) = (0−vi)ε−(x?i+1−vi+1)ε = ε(vi+1 − vi︸ ︷︷ ︸
≤0

−x?i+1︸︷︷︸
>0

) < 0,

contradicting the optimality.
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Projecting onto `1-balls

Can say more about x?:

Lemma

With p as in the above Lemma, and v ordered increasingly, we have

x?i = vi −Θp, i ≤ p,

where

Θp =
1

p

( p∑
i=1

vi − 1
)
.

Proof.

Assume there is i, j ≤ p with x?i − vi < x?j − vj . As before, we
could decrease x?j > 0 by ε and increase x?i by ε to get x ∈ ∆d s.t.

(x?−v)>(x−x?) = (x?i−vi)ε−(x?j−vj)ε = ε((x?i − vi)− (x?j − vj)︸ ︷︷ ︸
<0

) < 0,

again contradicting optimality of x?.
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Projecting onto `1-balls

Summary: have d candidates for x?, namely

x?(p) := (v1 −Θp, . . . , vp −Θp, 0, . . . , 0), p ∈ {1, . . . , d},

Need to find the right one. In order for candidate x?(p) to comply
with our first Lemma, we must have

vp −Θp > 0,

and this actually ensures x?(p)i > 0 for all i ≤ p (because v is
ordered) and therefore x?(p) ∈ ∆d.

But there could still be several choices for p. Among them, we
simply pick the one for which x?(p) minimizes the distance to v.

In time O(d log d), by first sorting v and checking incrementally.
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Projecting onto `1-balls

Theorem

Let v ∈ Rd, R ∈ R+, X = B1(R) the `1-ball around 0 of
radius R. The projection

ΠX(v) = argmin
x∈X

‖x− v‖2

of v onto B1(R) can be computed in time O(d log d).

This can be improved to time O(d) by avoiding sorting.
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Section 3.6

Proximal Gradient Descent
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Composite optimization problems

Consider objective functions composed as

f(x) := g(x) + h(x)

where g is a “nice” function, where as h is a “simple” additional
term, which however doesn’t satisfy the assumptions of niceness
which we used in the convergence analysis so far.

In particular, an important case is when h is not differentiable.
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Idea

The classical gradient step for minimizing g:

xt+1 = argmin
y

g(xt) +∇g(xt)
>(y − xt) +

1

2γ
‖y − xt‖2 .

For the stepsize γ := 1
L

it exactly minimizes the local quadratic model of g at

our current iterate xt, formed by the smoothness property with parameter L.

Now for f = g + h, keep the same for g, and add h unmodified.

xt+1 := argmin
y

g(xt) +∇g(xt)
>(y − xt) +

1

2γ
‖y − xt‖2 + h(y)

= argmin
y

1

2γ
‖y − (xt − γ∇g(xt))‖2 + h(y) ,

the proximal gradient descent update.
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The proximal gradient descent algorithm

An iteration of proximal gradient descent is defined as

xt+1 := proxh,γ(xt − γ∇g(xt)) .

Or equivalently

xt+1 = xt − γGγ(xt)

for Gh,γ(x) := 1
γ

(
x− proxh,γ(x− γ∇g(x))

)
being the so called

generalized gradient of f .
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A generalization of gradient descent?

I h ≡ 0: recover gradient descent

I h ≡ ιX : recover projected gradient descent!

Given a closed convex set X, the indicator function of the set
X is given as the convex function

ιX : Rd → R ∪+∞

x 7→ ιX(x) :=

{
0 if x ∈ X,
+∞ otherwise.

Proximal mapping becomes

proxh,γ(z) := argmin
y

{ 1

2γ
‖y−z‖2+ιX(y)

}
= argmin

y∈X
‖y−z‖2
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Convergence in O(1/ε) steps

Same as vanilla case for smooth functions, but now for any h for

which we can compute the proximal mapping.
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Chapter 4

Subgradient Descent
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Subgradients

What if f is not differentiable?

Definition

g ∈ Rd is a subgradient of f at x if

f(y) ≥ f(x) + g>(y − x) for all y ∈ dom(f)

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

(⇐⇒ (g,−1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

And: ∂f(x) ⊆ Rd is the set of subgradients of f at x.

EPFL Machine Learning and Optimization Laboratory 18/29



What are subgradients good for?

Convexity

Lemma (Exercise 22)

A function f : dom(f)→ R is convex if and only if dom(f) is
convex and ∂f(x) 6= ∅ for all x ∈ dom(f).

Lipschitz Continuity

Lemma (Exercise 24)

Let f : Rd → R be convex, B ∈ R+. Then the following two
statements are equivalent.

(i) ‖g‖ ≤ B for all x ∈ Rd and all g ∈ ∂f(x).

(ii) |f(x)− f(y)| ≤ B‖x− y‖ for all x,y ∈ Rd.
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What are subgradients good for?

Subgradient Optimality Condition. Subgradients also allow us
to describe cases of optimality for functions which are not
necessarily differentiable (and not necessarily convex)

Lemma

Suppose that f is any function over dom(f), and x ∈ dom(f). If
0 ∈ ∂f(x), then x is a global minimum.

Proof.
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The subgradient descent algorithm

An iteration of subgradient descent is defined as

Let gt ∈ ∂f(xt)

xt+1 := xt − γgt.
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Bounded subgradients: O(1/ε2) steps
The following result gives the convergence for Subgradient
Descent. It is identical to Theorem 2.1, up to relaxing the
requirement of differentiability.

Theorem

Let f : Rd → R be convex and B-Lipschitz continuous on Rd with
a global minimum x?; furthermore, suppose that ‖x0 − x?‖ ≤ R.
Choosing the constant stepsize

γ :=
R

B
√
T
,

subgradient descent yields

1

T

T−1∑
t=0

f(xt)− f(x?) ≤ RB√
T
.
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Bounded subgradients: O(1/ε2) steps

Proof.
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Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural
question to ask is if these rates are best possible or not.
Surprisingly, the rate can indeed not be improved in general.

Theorem (Nesterov)

For any T ≤ d− 1 and starting point x0, there is a function f in
the problem class of B-Lipschitz functions over Rd, such that any
(sub)gradient method has an objective error at least

f(xT )− f(x?) ≥ RB

2(1 +
√
T + 1)

.
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Chapter 5

Stochastic Gradient Descent

EPFL Machine Learning and Optimization Laboratory 25/29



Sum structured objective functions

Consider sum structured objective functions:

f(x) :=
1

n

n∑
i=1

fi(x).

Here fi is typically the cost function of the i-th datapoint, taken
from a training set of n elements in total.
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The SGD algorithm

An iteration of stochastic gradient descent (SGD) is defined as

sample i ∈ [n] uniformly at random

xt+1 := xt − γt∇fi(xt).

The vector gt := ∇fi(xt) is called a stochastic gradient.
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Unbiasedness of a stochastic gradient

Why uniform sampling?
In expectation over the random choice of i, gt does coincide with
the full gradient of f :

E
[
gt
∣∣xt] = ∇f(xt).

I gt is an unbiased stochastic gradient.

Why SGD?
n times cheaper!
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Idea: follow the vanilla analysis with ∇f(xt) replaced by gt...

next week...
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	Stochastic vanilla analysis

