forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpr.ml
152 lines (129 loc) · 5.28 KB
/
expr.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
(* Here, we define the data type encapsulating a symbolic arithmetic
expression, and provide some routines for manipulating it. *)
(* I will regret this hack : *)
(* NEWS: I did *)
type transcendent = I | MULTI_A | MULTI_B | CONJ
type expr =
| Num of Number.number
| NaN of transcendent
| Plus of expr list
| Times of expr * expr
| CTimes of expr * expr
| CTimesJ of expr * expr (* CTimesJ (a, b) = conj(a) * b *)
| Uminus of expr
| Load of Variable.variable
| Store of Variable.variable * expr
type assignment = Assign of Variable.variable * expr
(* various hash functions *)
let hash_float x =
let (mantissa, exponent) = frexp x
in truncate (float_of_int(exponent) *. 1234.567 +. mantissa *. 10000.0)
let sum_list l = List.fold_right (+) l 0
let transcendent_to_float = function
| I -> 2.718281828459045235360287471 (* any transcendent number will do *)
| MULTI_A -> 0.6931471805599453094172321214
| MULTI_B -> -0.3665129205816643270124391582
| CONJ -> 0.6019072301972345747375400015
let rec hash = function
| Num x -> hash_float (Number.to_float x)
| NaN x -> hash_float (transcendent_to_float x)
| Load v -> 1 + 1237 * Variable.hash v
| Store (v, x) -> 2 * Variable.hash v - 2345 * hash x
| Plus l -> 5 + 23451 * sum_list (List.map Hashtbl.hash l)
| Times (a, b) -> 41 + 31415 * (Hashtbl.hash a + Hashtbl.hash b)
| CTimes (a, b) -> 49 + 3245 * (Hashtbl.hash a + Hashtbl.hash b)
| CTimesJ (a, b) -> 31 + 3471 * (Hashtbl.hash a + Hashtbl.hash b)
| Uminus x -> 42 + 12345 * (hash x)
(* find all variables *)
let rec find_vars x =
match x with
| Load y -> [y]
| Plus l -> List.flatten (List.map find_vars l)
| Times (a, b) -> (find_vars a) @ (find_vars b)
| CTimes (a, b) -> (find_vars a) @ (find_vars b)
| CTimesJ (a, b) -> (find_vars a) @ (find_vars b)
| Uminus a -> find_vars a
| _ -> []
(* TRUE if expression is a constant *)
let is_constant = function
| Num _ -> true
| NaN _ -> true
| Load v -> Variable.is_constant v
| _ -> false
let is_known_constant = function
| Num _ -> true
| NaN _ -> true
| _ -> false
(* expr to string, used for debugging *)
let rec foldr_string_concat l =
match l with
[] -> ""
| [a] -> a
| a :: b -> a ^ " " ^ (foldr_string_concat b)
let string_of_transcendent = function
| I -> "I"
| MULTI_A -> "MULTI_A"
| MULTI_B -> "MULTI_B"
| CONJ -> "CONJ"
let rec to_string = function
| Load v -> Variable.unparse v
| Num n -> string_of_float (Number.to_float n)
| NaN n -> string_of_transcendent n
| Plus x -> "(+ " ^ (foldr_string_concat (List.map to_string x)) ^ ")"
| Times (a, b) -> "(* " ^ (to_string a) ^ " " ^ (to_string b) ^ ")"
| CTimes (a, b) -> "(c* " ^ (to_string a) ^ " " ^ (to_string b) ^ ")"
| CTimesJ (a, b) -> "(cj* " ^ (to_string a) ^ " " ^ (to_string b) ^ ")"
| Uminus a -> "(- " ^ (to_string a) ^ ")"
| Store (v, a) -> "(:= " ^ (Variable.unparse v) ^ " " ^
(to_string a) ^ ")"
let rec to_string_a d x =
if (d = 0) then "..." else match x with
| Load v -> Variable.unparse v
| Num n -> Number.to_konst n
| NaN n -> string_of_transcendent n
| Plus x -> "(+ " ^ (foldr_string_concat (List.map (to_string_a (d - 1)) x)) ^ ")"
| Times (a, b) -> "(* " ^ (to_string_a (d - 1) a) ^ " " ^ (to_string_a (d - 1) b) ^ ")"
| CTimes (a, b) -> "(c* " ^ (to_string_a (d - 1) a) ^ " " ^ (to_string_a (d - 1) b) ^ ")"
| CTimesJ (a, b) -> "(cj* " ^ (to_string_a (d - 1) a) ^ " " ^ (to_string_a (d - 1) b) ^ ")"
| Uminus a -> "(- " ^ (to_string_a (d-1) a) ^ ")"
| Store (v, a) -> "(:= " ^ (Variable.unparse v) ^ " " ^
(to_string_a (d-1) a) ^ ")"
let to_string = to_string_a 10
let assignment_to_string = function
| Assign (v, a) -> "(:= " ^ (Variable.unparse v) ^ " " ^ (to_string a) ^ ")"
let dump print = List.iter (fun x -> print ((assignment_to_string x) ^ "\n"))
(* find all constants in a given expression *)
let rec expr_to_constants = function
| Num n -> [n]
| Plus a -> List.flatten (List.map expr_to_constants a)
| Times (a, b) -> (expr_to_constants a) @ (expr_to_constants b)
| CTimes (a, b) -> (expr_to_constants a) @ (expr_to_constants b)
| CTimesJ (a, b) -> (expr_to_constants a) @ (expr_to_constants b)
| Uminus a -> expr_to_constants a
| _ -> []
let add_float_key_value list_so_far k =
if List.exists (fun k2 -> Number.equal k k2) list_so_far then
list_so_far
else
k :: list_so_far
let unique_constants = List.fold_left add_float_key_value []