forked from locuslab/smoothing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcertify_linear_mnist.sh
executable file
·31 lines (30 loc) · 1.58 KB
/
certify_linear_mnist.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#!/bin/bash
# certify models with varying amounts of noise
#command line arg: size of hidden layer
g=0
for i in 0.12 0.25 0.5 1; # train noise, data
do
for j in 0 0.12 0.25 0.5 1; #train noise, hidden layer
do
froot="mnist_results/linear/hlayer${1}/"
fmin="${froot}min/train-${i}-${j}"
fmean="${froot}min/train-${i}-${j}"
mkdir -p mnist_results/linear/hlayer444/min/train-$i-$j/
mkdir -p mnist_results/linear/hlayer444/mean/train-$i-$j/
for k in 0.12 0.25 0.5 1; #test noise, data
do
for l in 0 0.12 0.25 0.5 1; #test noise, hidden layer
do
python code/certify.py mnist mnist_models/linear/hlayer444/$i-$j/checkpoint.pth.tar $k mnist_results/linear/hlayer444/min/train-$i-$j/test-$k-$l --alpha 0.001 --N0 100 --N 1000000 --skip 100 --batch 400 --gpu $g --noise_std_lst 0 $l --layered_GNI --min &
g=$(((g+1)%4))
if (($g==3))
then
python code/certify.py mnist mnist_models/linear/hlayer444/$i-$j/checkpoint.pth.tar $k mnist_results/linear/hlayer444/mean/train-$i-$j/test-$k-$l --alpha 0.001 --N0 100 --N 1000000 --skip 100 --batch 400 --gpu $g --noise_std_lst 0 $l --layered_GNI --mean
else
python code/certify.py mnist mnist_models/linear/hlayer444/$i-$j/checkpoint.pth.tar $k mnist_results/linear/hlayer444/mean/train-$i-$j/test-$k-$l --alpha 0.001 --N0 100 --N 1000000 --skip 100 --batch 400 --gpu $g --noise_std_lst 0 $l --layered_GNI --mean &
fi
g=$(((g+1)%4))
done
done
done
done