-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathimg_processing.py
306 lines (265 loc) · 11.3 KB
/
img_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
import cv2
import numpy as np
import torch
import kornia as kn
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio
from sklearn.metrics import mean_absolute_error
def image_normalization(img, img_min=0, img_max=255,
epsilon=1e-12):
"""This is a typical image normalization function
where the minimum and maximum of the image is needed
source: https://en.wikipedia.org/wiki/Normalization_(image_processing)
:param img: an image could be gray scale or color
:param img_min: for default is 0
:param img_max: for default is 255
:return: a normalized image, if max is 255 the dtype is uint8
"""
img = np.float32(img)
# whenever an inconsistent image
img = (img - np.min(img)) * (img_max - img_min) / \
((np.max(img) - np.min(img)) + epsilon) + img_min
return img
def count_parameters(model=None):
if model is not None:
return sum(p.numel() for p in model.parameters() if p.requires_grad)
else:
print("Error counting model parameters line 32 img_processing.py")
raise NotImplementedError
def save_image_batch_to_disk(tensor, output_dir, file_names, img_shape=None, arg=None, is_inchannel=False):
os.makedirs(output_dir, exist_ok=True)
predict_all = arg.predict_all
if not arg.is_testing:
assert len(tensor.shape) == 4, tensor.shape
img_height,img_width = img_shape[0].item(),img_shape[1].item()
for tensor_image, file_name in zip(tensor, file_names):
image_vis = kn.utils.tensor_to_image(
torch.sigmoid(tensor_image))#[..., 0]
image_vis = (255.0*(1.0 - image_vis)).astype(np.uint8)
output_file_name = os.path.join(output_dir, file_name)
# print('image vis size', image_vis.shape)
image_vis =cv2.resize(image_vis, (img_width, img_height))
assert cv2.imwrite(output_file_name, image_vis)
assert cv2.imwrite('checkpoints/current_res/'+file_name, image_vis)
# print(f"Image saved in {output_file_name}")
else:
if is_inchannel:
tensor, tensor2 = tensor
fuse_name = 'fusedCH'
av_name='avgCH'
is_2tensors=True
edge_maps2 = []
for i in tensor2:
tmp = torch.sigmoid(i).cpu().detach().numpy()
edge_maps2.append(tmp)
tensor2 = np.array(edge_maps2)
else:
fuse_name = 'fused'
# av_name = 'avg'
tensor2=None
tmp_img2 = None
output_dir_f = os.path.join(output_dir, fuse_name)# normal execution
# output_dir_f = output_dir# for DMRIR
# output_dir_a = os.path.join(output_dir, av_name)
os.makedirs(output_dir_f, exist_ok=True)
# os.makedirs(output_dir_a, exist_ok=True)
if predict_all:
all_data_dir = os.path.join(output_dir, "all_edges")
os.makedirs(all_data_dir, exist_ok=True)
out1_dir = os.path.join(all_data_dir,"o1")
out2_dir = os.path.join(all_data_dir,"o2")
out3_dir = os.path.join(all_data_dir,"o3")# TEED =output 3
out4_dir = os.path.join(all_data_dir,"o4") # TEED = average
out5_dir = os.path.join(all_data_dir,"o5")# fusion # TEED
out6_dir = os.path.join(all_data_dir,"o6") # fusion
os.makedirs(out1_dir, exist_ok=True)
os.makedirs(out2_dir, exist_ok=True)
os.makedirs(out3_dir, exist_ok=True)
os.makedirs(out4_dir, exist_ok=True)
os.makedirs(out5_dir, exist_ok=True)
os.makedirs(out6_dir, exist_ok=True)
# 255.0 * (1.0 - em_a)
edge_maps = []
for i in tensor:
tmp = torch.sigmoid(i).cpu().detach().numpy()
edge_maps.append(tmp)
tensor = np.array(edge_maps)
# print(f"tensor shape: {tensor.shape}")
image_shape = [x.cpu().detach().numpy() for x in img_shape]
# (H, W) -> (W, H)
image_shape = [[y, x] for x, y in zip(image_shape[0], image_shape[1])]
assert len(image_shape) == len(file_names)
idx = 0
for i_shape, file_name in zip(image_shape, file_names):
tmp = tensor[:, idx, ...]
tmp2 = tensor2[:, idx, ...] if tensor2 is not None else None
# tmp = np.transpose(np.squeeze(tmp), [0, 1, 2])
tmp = np.squeeze(tmp)
tmp2 = np.squeeze(tmp2) if tensor2 is not None else None
# Iterate our all 7 NN outputs for a particular image
preds = []
fuse_num = tmp.shape[0]-1
for i in range(tmp.shape[0]):
tmp_img = tmp[i]
tmp_img = np.uint8(image_normalization(tmp_img))
tmp_img = cv2.bitwise_not(tmp_img)
# tmp_img[tmp_img < 0.0] = 0.0
# tmp_img = 255.0 * (1.0 - tmp_img)
if tmp2 is not None:
tmp_img2 = tmp2[i]
tmp_img2 = np.uint8(image_normalization(tmp_img2))
tmp_img2 = cv2.bitwise_not(tmp_img2)
# Resize prediction to match input image size
if not tmp_img.shape[1] == i_shape[0] or not tmp_img.shape[0] == i_shape[1]:
tmp_img = cv2.resize(tmp_img, (i_shape[0], i_shape[1]))
tmp_img2 = cv2.resize(tmp_img2, (i_shape[0], i_shape[1])) if tmp2 is not None else None
if tmp2 is not None:
tmp_mask = np.logical_and(tmp_img>128,tmp_img2<128)
tmp_img= np.where(tmp_mask, tmp_img2, tmp_img)
preds.append(tmp_img)
else:
preds.append(tmp_img)
if i == fuse_num:
# print('fuse num',tmp.shape[0], fuse_num, i)
fuse = tmp_img
fuse = fuse.astype(np.uint8)
if tmp_img2 is not None:
fuse2 = tmp_img2
fuse2 = fuse2.astype(np.uint8)
# fuse = fuse-fuse2
fuse_mask=np.logical_and(fuse>128,fuse2<128)
fuse = np.where(fuse_mask,fuse2, fuse)
# print(fuse.shape, fuse_mask.shape)
# Save predicted edge maps
average = np.array(preds, dtype=np.float32)
average = np.uint8(np.mean(average, axis=0))
output_file_name_f = os.path.join(output_dir_f, file_name)
# output_file_name_a = os.path.join(output_dir_a, file_name)
cv2.imwrite(output_file_name_f, fuse)
# cv2.imwrite(output_file_name_a, average)
if predict_all:
cv2.imwrite(os.path.join(out1_dir,file_name),preds[0])
cv2.imwrite(os.path.join(out2_dir,file_name),preds[1])
cv2.imwrite(os.path.join(out3_dir,file_name),preds[2])
cv2.imwrite(os.path.join(out4_dir,file_name),average)
cv2.imwrite(os.path.join(out5_dir,file_name),fuse)
cv2.imwrite(os.path.join(out6_dir,file_name),fuse)
idx += 1
def restore_rgb(config, I, restore_rgb=False):
"""
:param config: [args.channel_swap, args.mean_pixel_value]
:param I: and image or a set of images
:return: an image or a set of images restored
"""
if len(I) > 3 and not type(I) == np.ndarray:
I = np.array(I)
I = I[:, :, :, 0:3]
n = I.shape[0]
for i in range(n):
x = I[i, ...]
x = np.array(x, dtype=np.float32)
x += config[1]
if restore_rgb:
x = x[:, :, config[0]]
x = image_normalization(x)
I[i, :, :, :] = x
elif len(I.shape) == 3 and I.shape[-1] == 3:
I = np.array(I, dtype=np.float32)
I += config[1]
if restore_rgb:
I = I[:, :, config[0]]
I = image_normalization(I)
else:
print("Sorry the input data size is out of our configuration")
return I
def visualize_result(imgs_list, arg):
"""
data 2 image in one matrix
:param imgs_list: a list of prediction, gt and input data
:param arg:
:return: one image with the whole of imgs_list data
"""
n_imgs = len(imgs_list)
data_list = []
for i in range(n_imgs):
tmp = imgs_list[i]
# print(tmp.shape)
if tmp.shape[0] == 3:
tmp = np.transpose(tmp, [1, 2, 0])
tmp = restore_rgb([
arg.channel_swap,
arg.mean_train[:3]
], tmp)
tmp = np.uint8(image_normalization(tmp))
else:
tmp = np.squeeze(tmp)
if len(tmp.shape) == 2:
tmp = np.uint8(image_normalization(tmp))
tmp = cv2.bitwise_not(tmp)
tmp = cv2.cvtColor(tmp, cv2.COLOR_GRAY2BGR)
else:
tmp = np.uint8(image_normalization(tmp))
data_list.append(tmp)
# print(i,tmp.shape)
img = data_list[0]
if n_imgs % 2 == 0:
imgs = np.zeros((img.shape[0] * 2 + 10, img.shape[1]
* (n_imgs // 2) + ((n_imgs // 2 - 1) * 5), 3))
else:
imgs = np.zeros((img.shape[0] * 2 + 10, img.shape[1]
* ((1 + n_imgs) // 2) + ((n_imgs // 2) * 5), 3))
n_imgs += 1
k = 0
imgs = np.uint8(imgs)
i_step = img.shape[0] + 10
j_step = img.shape[1] + 5
for i in range(2):
for j in range(n_imgs // 2):
if k < len(data_list):
imgs[i * i_step:i * i_step+img.shape[0],
j * j_step:j * j_step+img.shape[1],
:] = data_list[k]
k += 1
else:
pass
return imgs
if __name__ == '__main__':
img_base_dir='tmp_edge'
gt_base_dir='C:/Users/xavysp/dataset/BIPED/edges/edge_maps/test/rgbr'
# gt_base_dir='C:/Users/xavysp/dataset/BRIND/test_edges'
# gt_base_dir='C:/Users/xavysp/dataset/UDED/gt'
vers = 'TEED model in BIPED'
list_img = os.listdir(img_base_dir)
list_gt = os.listdir(gt_base_dir)
mse_list=[]
psnr_list=[]
mae_list=[]
for img_name, gt_name in zip(list_img,list_gt):
# print(img_name, ' ', gt_name)
tmp_img = cv2.imread(os.path.join(img_base_dir,img_name),0)
tmp_img = cv2.bitwise_not(tmp_img) # if the image's background
# is white uncomment this line
tmp_gt = cv2.imread(os.path.join(gt_base_dir,gt_name),0)
# print(f"image {img_name} {tmp_img.shape}")
# print(f"gt {gt_name} {tmp_gt.shape}")
a = tmp_img.copy()
tmp_img = image_normalization(tmp_img, img_max=1.)
tmp_gt = image_normalization(tmp_gt, img_max=1.)
psnr = peak_signal_noise_ratio(tmp_gt, tmp_img)
mse = mean_squared_error(tmp_gt, tmp_img)
mae = mean_absolute_error(tmp_gt, tmp_img)
# a = cv2.bitwise_not(a) # save data
# cv2.imwrite(os.path.join("tmp_res",img_name), a) # save data
psnr_list.append(psnr)
mse_list.append(mse)
mae_list.append(mae)
print(f"PSNR= {psnr} in {img_name}")
av_psnr =np.array(psnr_list).mean()
av_mse =np.array(mse_list).mean()
av_mae =np.array(mae_list).mean()
print(" MSE results: mean ", av_mse)
print(" MAE results: mean ", av_mae)
# print(mse_list)
print(" PSNR results: mean", av_psnr)
# print(psnr_list)
print('version: ',vers)