Skip to content

Latest commit

 

History

History
148 lines (110 loc) · 4.79 KB

README.md

File metadata and controls

148 lines (110 loc) · 4.79 KB

如果帮到您请给个 star ✨✨✨,您的 star 是我最大的鼓励!

Yolov5 keras 漂浮物检测 万能运行 数据集制作

实验指标

yolov5s 为基础训练,epoch = 50

分类 P R mAP0.5
总体 0.884 0.899 0.888
人体 0.846 0.893 0.877
0.889 0.883 0.871
安全帽 0.917 0.921 0.917

对应的权重文件百度云,提取码: b981


yolov5m 为基础训练,epoch = 100

分类 P R mAP0.5
总体 0.886 0.915 0.901
人体 0.844 0.906 0.887
0.9 0.911 0.9
安全帽 0.913 0.929 0.916

对应的权重文件百度云,提取码: psst


yolov5l 为基础训练,epoch = 100

分类 P R mAP0.5
总体 0.892 0.919 0.906
人体 0.856 0.914 0.897
0.893 0.913 0.901
安全帽 0.927 0.929 0.919

对应的权重文件百度云,提取码: a66e


1.环境准备

首先确保自己的环境:

    pip install -i https://pypi.douban.com/simple/ --trusted-host=pypi.douban.com/simple -r requirements.txt

2. 训练自己的数据

修改文件 data/custom_data.yaml

# 训练集和验证集的 labels 和 image 文件的位置
train: ./score/images/train
val: ./score/images/val

# number of classes
nc: 3

# class names
names: ['person', 'head', 'helmet']

生成的 .txt 文件放置的名字是图片的名字,放置在 label 文件夹中,例如:

./score/images/train/00001.jpg  # image
./score/labels/train/00001.txt  # label

生成的 .txt 例子:

1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374

3.文件放置规范

图片放在:./score/images/train 标签放在:./score/labels/train

标签.txt 文件放置的名字是图片的名字,放置在 label 文件夹中,例如:

./score/labels/train/00001.txt 例子: 类别 X1 Y1 X2 Y2 1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062 1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726 1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139 1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046 0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747 0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998 0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374

4.开始训练

这里选择了 yolov5s 模型进行训练,权重也是基于 yolov5s.pt 来训练

python train.py --img 640 --batch 16 --epochs 10 --data ./data/custom_data.yaml --cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt

识别

侦测图片会保存在 ./inferenct/output/ 文件夹下

运行命令:

python detect.py --source   0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

例如使用我的 s 权重检测图片,可以运行以下命令,侦测图片会保存在 ./inferenct/output/ 文件夹下

python detect.py --source 图片路径 --weights ./weights/helmet_head_person_s.pt

检测区域内是否有识别物体

执行侦测

侦测图片会保存在 ./inferenct/output/ 文件夹下

运行命令:

python area_detect.py --source ./area_dangerous --weights ./weights/helmet_head_person_s.pt

效果:物体区域会使用 红色框 标出来,同时,危险区域里面的人体也会被框出来,危险区域外的人体不会被框选出来

如果帮到您请给个 star ✨✨✨,您的 star 是我最大的鼓励!

如果能帮到您的项目快速落地,可以 buy me a coffee ☕

也可以加我的 WeChat 和我一起探讨更多的可能!