-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
132 lines (112 loc) · 4.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import sys
import cv2
import argparse
import numpy as np
from torch.utils.data.dataset import Dataset
from tqdm import tqdm
from loss import get_loss
from refinenet import get_network
from dataset import HumanDataset, MattingDataset
from trainer import Trainer
from inference import InferenceWrapper
from torch.utils.data import ConcatDataset
from utils import draw_mask, generate_mask_path, mean_iou
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Mask R-CNN Demo')
parser.add_argument('--mode', help='train or eval', default='train', type=str)
parser.add_argument('--arch', help='model name', default='refine34', type=str)
parser.add_argument('--batch_size', help='batch size', default=10, type=int)
parser.add_argument('--num_workers', help='dataloder worker number', default=4, type=int)
parser.add_argument('--anno_file', help='annotation list', default=[], type=str, nargs='+')
parser.add_argument('--thresh', help='segmentation threshold', default=0.5, type=float)
parser.add_argument('--lr', help='learning rate', default=1e-3, type=float)
parser.add_argument('--lr_step', help="learning schedule", default=[20, 30], type=int, nargs='+')
parser.add_argument('--epochs', help='training epochs', default=40, type=int)
parser.add_argument('--save_step', help='save model each save step', default=3, type=int)
parser.add_argument('--save_path', help="outdir", default="./output", type=str)
parser.add_argument('--save_tag', help="tag", default="default", type=str)
parser.add_argument('--model_file', help="outdir", default=None, type=str)
parser.add_argument('--clip_grad', help="clip grad during training", default=None, type=float)
parser.add_argument('--gpu_num', help="the number of gpu", default=1, type=int)
parser.add_argument('--vis_path', help="vis save path", default=None, type=str)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
def train(args, criterion):
# dataloader informations
dataset = ConcatDataset([HumanDataset(args.anno_file[0], is_train=True),
MattingDataset(args.anno_file[1], is_train=True)])
dataloader_info = {
'dataset': dataset,
'batch_size': args.batch_size,
'shuffle': True,
'num_workers': args.num_workers,
'drop_last': True,
}
# auto pretrained during training
model = get_network(args.arch, True)
# training process
epochs = args.epochs
save_step = args.save_step
tensorboard_dir = os.path.join(args.save_path, args.save_tag)
trainer = Trainer(model, dataloader_info, criterion, args.lr, args.lr_step, args.gpu_num,
scale_ratio=0.25, iter_size=1, outdir=args.save_path, tensorboard_dir=tensorboard_dir, grad_clip=args.clip_grad)
for epoch_id in range(1, epochs+1):
# train
trainer.lr_adjust(epoch_id)
trainer.train_one_epoch(epoch_id)
#trainer.lr_adjust(epoch_id)
# checkpoint
if epoch_id % save_step == 0:
trainer.save_model(epoch_id=epoch_id, tag=args.save_tag)
def test(args):
# tester
model = get_network(args.arch, True)
tester = InferenceWrapper(model, args.model_file, args.gpu_num>0, thresh=args.thresh)
# load anno list
f = open(args.anno_file[0], 'r')
img_paths = [line.strip() for line in f]
mask_paths = [generate_mask_path(p, True, 'matting') for p in img_paths]
vis_path = args.vis_path
iou = 0.
# background
bk = cv2.imread('./background/star.jpeg')
bk = cv2.resize(bk, (600, 800))
for i in tqdm(range(len(img_paths))):
#import pdb;pdb.set_trace()
img = cv2.imread(img_paths[i])
mask = cv2.imread(mask_paths[i], cv2.IMREAD_UNCHANGED)[:,:,3]
_, mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
mask = np.stack([mask, mask, mask], axis=2).astype(np.uint8)
try:
pred = tester.forward(img)
except:
continue
# vis
if vis_path is not None:
img_name = os.path.basename(img_paths[i])
save_path = os.path.join(vis_path, img_name)
#cv2.imshow('demo', np.concatenate([img, mask, pred], axis=1))
#cv2.waitKey()
pred_mask = pred[:,:,0:1] / 255.
bk_img = pred_mask * img + (1. - pred_mask) * bk
cv2.imwrite(save_path, np.concatenate([img, bk_img.astype(np.uint8), pred], axis=1))
iou += mean_iou(pred, mask)
#import pdb;pdb.set_trace()
print('Mean Iou: {}'.format(iou / len(img_paths)))
if __name__ == '__main__':
args = parse_args()
# train
if args.mode == 'train':
criterion = get_loss('bce')
#criterion = get_loss('focal')
train(args, criterion)
# test
if args.mode == 'eval':
test(args)