forked from ceph/ceph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrag.h
593 lines (526 loc) · 15.3 KB
/
frag.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2004-2006 Sage Weil <[email protected]>
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#ifndef CEPH_FRAG_H
#define CEPH_FRAG_H
#include <stdint.h>
#include <list>
#include <iostream>
#include <stdio.h>
#include "buffer.h"
#include "compact_map.h"
#include "ceph_frag.h"
#include "include/assert.h"
/*
*
* the goal here is to use a binary split strategy to partition a namespace.
* frag_t represents a particular fragment. bits() tells you the size of the
* fragment, and value() it's name. this is roughly analogous to an ip address
* and netmask.
*
* fragtree_t represents an entire namespace and it's partition. it essentially
* tells you where fragments are split into other fragments, and by how much
* (i.e. by how many bits, resulting in a power of 2 number of child fragments).
*
* this vaguely resembles a btree, in that when a fragment becomes large or small
* we can split or merge, except that there is no guarantee of being balanced.
*
* presumably we are partitioning the output of a (perhaps specialized) hash
* function.
*/
/**
* frag_t
*
* description of an individual fragment. that is, a particular piece
* of the overall namespace.
*
* this is conceptually analogous to an ip address and netmask.
*
* a value v falls "within" fragment f iff (v & f.mask()) == f.value().
*
* we write it as v/b, where v is a value and b is the number of bits.
* 0/0 (bits==0) corresponds to the entire namespace. if we bisect that,
* we get 0/1 and 1/1. quartering gives us 0/2, 1/2, 2/2, 3/2. and so on.
*
* this makes the right most bit of v the "most significant", which is the
* opposite of what we usually see.
*/
/*
* TODO:
* - get_first_child(), next_sibling(int parent_bits) to make (possibly partial)
* iteration efficient (see, e.g., try_assimilate_children()
* - rework frag_t so that we mask the left-most (most significant) bits instead of
* the right-most (least significant) bits. just because it's more intutive, and
* matches the network/netmask concept.
*/
typedef uint32_t _frag_t;
class frag_t {
/*
* encoding is dictated by frag_* functions in ceph_fs.h. use those
* helpers _exclusively_.
*/
public:
_frag_t _enc;
frag_t() : _enc(0) { }
frag_t(unsigned v, unsigned b) : _enc(ceph_frag_make(b, v)) { }
frag_t(_frag_t e) : _enc(e) { }
// constructors
void from_unsigned(unsigned e) { _enc = e; }
// accessors
unsigned value() const { return ceph_frag_value(_enc); }
unsigned bits() const { return ceph_frag_bits(_enc); }
unsigned mask() const { return ceph_frag_mask(_enc); }
unsigned mask_shift() const { return ceph_frag_mask_shift(_enc); }
operator _frag_t() const { return _enc; }
// tests
bool contains(unsigned v) const { return ceph_frag_contains_value(_enc, v); }
bool contains(frag_t sub) const { return ceph_frag_contains_frag(_enc, sub._enc); }
bool is_root() const { return bits() == 0; }
frag_t parent() const {
assert(bits() > 0);
return frag_t(ceph_frag_parent(_enc));
}
// splitting
frag_t make_child(int i, int nb) const {
assert(i < (1<<nb));
return frag_t(ceph_frag_make_child(_enc, nb, i));
}
void split(int nb, std::list<frag_t>& fragments) const {
assert(nb > 0);
unsigned nway = 1 << nb;
for (unsigned i=0; i<nway; i++)
fragments.push_back(make_child(i, nb));
}
// binary splitting
frag_t left_child() const { return frag_t(ceph_frag_left_child(_enc)); }
frag_t right_child() const { return frag_t(ceph_frag_right_child(_enc)); }
bool is_left() const { return ceph_frag_is_left_child(_enc); }
bool is_right() const { return ceph_frag_is_right_child(_enc); }
frag_t get_sibling() const {
assert(!is_root());
return frag_t(ceph_frag_sibling(_enc));
}
// sequencing
bool is_leftmost() const { return ceph_frag_is_leftmost(_enc); }
bool is_rightmost() const { return ceph_frag_is_rightmost(_enc); }
frag_t next() const {
assert(!is_rightmost());
return frag_t(ceph_frag_next(_enc));
}
// parse
bool parse(const char *s) {
int pvalue, pbits;
int r = sscanf(s, "%x/%d", &pvalue, &pbits);
if (r == 2) {
*this = frag_t(pvalue, pbits);
return true;
}
return false;
}
};
inline std::ostream& operator<<(std::ostream& out, const frag_t& hb)
{
//out << std::hex << hb.value() << std::dec << "/" << hb.bits() << '=';
unsigned num = hb.bits();
if (num) {
unsigned val = hb.value();
for (unsigned bit = 23; num; num--, bit--)
out << ((val & (1<<bit)) ? '1':'0');
}
return out << '*';
}
inline void encode(frag_t f, bufferlist& bl) { encode_raw(f._enc, bl); }
inline void decode(frag_t &f, bufferlist::iterator& p) {
__u32 v;
decode_raw(v, p);
f._enc = v;
}
/**
* fragtree_t -- partition an entire namespace into one or more frag_t's.
*/
class fragtree_t {
// pairs <f, b>:
// frag_t f is split by b bits.
// if child frag_t does not appear, it is not split.
public:
compact_map<frag_t,int32_t> _splits;
public:
// -------------
// basics
void swap(fragtree_t& other) {
_splits.swap(other._splits);
}
void clear() {
_splits.clear();
}
// -------------
// accessors
bool empty() const {
return _splits.empty();
}
int get_split(const frag_t hb) const {
compact_map<frag_t,int32_t>::const_iterator p = _splits.find(hb);
if (p == _splits.end())
return 0;
else
return p->second;
}
bool is_leaf(frag_t x) const {
std::list<frag_t> ls;
get_leaves_under(x, ls);
//generic_dout(10) << "is_leaf(" << x << ") -> " << ls << dendl;
if (!ls.empty() &&
ls.front() == x &&
ls.size() == 1)
return true;
return false;
}
/**
* get_leaves -- list all leaves
*/
void get_leaves(std::list<frag_t>& ls) const {
return get_leaves_under_split(frag_t(), ls);
}
/**
* get_leaves_under_split -- list all leaves under a known split point (or root)
*/
void get_leaves_under_split(frag_t under, std::list<frag_t>& ls) const {
std::list<frag_t> q;
q.push_back(under);
while (!q.empty()) {
frag_t t = q.back();
q.pop_back();
int nb = get_split(t);
if (nb)
t.split(nb, q); // queue up children
else
ls.push_front(t); // not spit, it's a leaf.
}
}
/**
* get_branch -- get branch point at OR above frag @a x
* - may be @a x itself, if @a x is a split
* - may be root (frag_t())
*/
frag_t get_branch(frag_t x) const {
while (1) {
if (x == frag_t()) return x; // root
if (get_split(x)) return x; // found it!
x = x.parent();
}
}
/**
* get_branch_above -- get a branch point above frag @a x
* - may be root (frag_t())
* - may NOT be @a x, even if @a x is a split.
*/
frag_t get_branch_above(frag_t x) const {
while (1) {
if (x == frag_t()) return x; // root
x = x.parent();
if (get_split(x)) return x; // found it!
}
}
/**
* get_branch_or_leaf -- get branch or leaf point parent for frag @a x
* - may be @a x itself, if @a x is a split or leaf
* - may be root (frag_t())
*/
frag_t get_branch_or_leaf(frag_t x) const {
frag_t branch = get_branch(x);
int nb = get_split(branch);
if (nb > 0 && // if branch is a split, and
branch.bits() + nb <= x.bits()) // one of the children is or contains x
return frag_t(x.value(), branch.bits()+nb); // then return that child (it's a leaf)
else
return branch;
}
/**
* get_leaves_under(x, ls) -- search for any leaves fully contained by x
*/
void get_leaves_under(frag_t x, std::list<frag_t>& ls) const {
std::list<frag_t> q;
q.push_back(get_branch_or_leaf(x));
while (!q.empty()) {
frag_t t = q.front();
q.pop_front();
if (t.bits() >= x.bits() && // if t is more specific than x, and
!x.contains(t)) // x does not contain t,
continue; // then skip
int nb = get_split(t);
if (nb)
t.split(nb, q); // queue up children
else if (x.contains(t))
ls.push_back(t); // not spit, it's a leaf.
}
}
/**
* contains(fg) -- does fragtree contain the specific frag @a x
*/
bool contains(frag_t x) const {
std::list<frag_t> q;
q.push_back(get_branch(x));
while (!q.empty()) {
frag_t t = q.front();
q.pop_front();
if (t.bits() >= x.bits() && // if t is more specific than x, and
!x.contains(t)) // x does not contain t,
continue; // then skip
int nb = get_split(t);
if (nb) {
if (t == x) return false; // it's split.
t.split(nb, q); // queue up children
} else {
if (t == x) return true; // it's there.
}
}
return false;
}
/**
* operator[] -- map a (hash?) value to a frag
*/
frag_t operator[](unsigned v) const {
frag_t t;
while (1) {
assert(t.contains(v));
int nb = get_split(t);
// is this a leaf?
if (nb == 0) return t; // done.
// pick appropriate child fragment.
unsigned nway = 1 << nb;
unsigned i;
for (i=0; i<nway; i++) {
frag_t n = t.make_child(i, nb);
if (n.contains(v)) {
t = n;
break;
}
}
assert(i < nway);
}
}
// ---------------
// modifiers
void split(frag_t x, int b, bool simplify=true) {
assert(is_leaf(x));
_splits[x] = b;
if (simplify)
try_assimilate_children(get_branch_above(x));
}
void merge(frag_t x, int b, bool simplify=true) {
assert(!is_leaf(x));
assert(_splits[x] == b);
_splits.erase(x);
if (simplify)
try_assimilate_children(get_branch_above(x));
}
/*
* if all of a given split's children are identically split,
* then the children can be assimilated.
*/
void try_assimilate_children(frag_t x) {
int nb = get_split(x);
if (!nb) return;
std::list<frag_t> children;
x.split(nb, children);
int childbits = 0;
for (std::list<frag_t>::iterator p = children.begin();
p != children.end();
++p) {
int cb = get_split(*p);
if (!cb) return; // nope.
if (childbits && cb != childbits) return; // not the same
childbits = cb;
}
// all children are split with childbits!
for (std::list<frag_t>::iterator p = children.begin();
p != children.end();
++p)
_splits.erase(*p);
_splits[x] += childbits;
}
bool force_to_leaf(CephContext *cct, frag_t x) {
if (is_leaf(x))
return false;
lgeneric_dout(cct, 10) << "force_to_leaf " << x << " on " << _splits << dendl;
frag_t parent = get_branch_or_leaf(x);
assert(parent.bits() <= x.bits());
lgeneric_dout(cct, 10) << "parent is " << parent << dendl;
// do we need to split from parent to x?
if (parent.bits() < x.bits()) {
int spread = x.bits() - parent.bits();
int nb = get_split(parent);
lgeneric_dout(cct, 10) << "spread " << spread << ", parent splits by " << nb << dendl;
if (nb == 0) {
// easy: split parent (a leaf) by the difference
lgeneric_dout(cct, 10) << "splitting parent " << parent << " by spread " << spread << dendl;
split(parent, spread);
assert(is_leaf(x));
return true;
}
assert(nb > spread);
// add an intermediary split
merge(parent, nb, false);
split(parent, spread, false);
std::list<frag_t> subs;
parent.split(spread, subs);
for (std::list<frag_t>::iterator p = subs.begin();
p != subs.end();
++p) {
lgeneric_dout(cct, 10) << "splitting intermediate " << *p << " by " << (nb-spread) << dendl;
split(*p, nb - spread, false);
}
}
// x is now a leaf or split.
// hoover up any children.
std::list<frag_t> q;
q.push_back(x);
while (!q.empty()) {
frag_t t = q.front();
q.pop_front();
int nb = get_split(t);
if (nb) {
lgeneric_dout(cct, 10) << "merging child " << t << " by " << nb << dendl;
merge(t, nb, false); // merge this point, and
t.split(nb, q); // queue up children
}
}
lgeneric_dout(cct, 10) << "force_to_leaf done" << dendl;
assert(is_leaf(x));
return true;
}
// encoding
void encode(bufferlist& bl) const {
::encode(_splits, bl);
}
void decode(bufferlist::iterator& p) {
::decode(_splits, p);
}
void encode_nohead(bufferlist& bl) const {
for (compact_map<frag_t,int32_t>::const_iterator p = _splits.begin();
p != _splits.end();
++p) {
::encode(p->first, bl);
::encode(p->second, bl);
}
}
void decode_nohead(int n, bufferlist::iterator& p) {
_splits.clear();
while (n-- > 0) {
frag_t f;
::decode(f, p);
::decode(_splits[f], p);
}
}
void print(std::ostream& out) {
out << "fragtree_t(";
std::list<frag_t> q;
q.push_back(frag_t());
while (!q.empty()) {
frag_t t = q.front();
q.pop_front();
// newline + indent?
if (t.bits()) {
out << std::endl;
for (unsigned i=0; i<t.bits(); i++) out << ' ';
}
int nb = get_split(t);
if (nb) {
out << t << " %" << nb;
t.split(nb, q); // queue up children
} else {
out << t;
}
}
out << ")";
}
void dump(Formatter *f) const {
f->open_array_section("splits");
for (compact_map<frag_t,int32_t>::const_iterator p = _splits.begin();
p != _splits.end();
++p) {
f->open_object_section("split");
std::ostringstream frag_str;
frag_str << p->first;
f->dump_string("frag", frag_str.str());
f->dump_int("children", p->second);
f->close_section(); // split
}
f->close_section(); // splits
}
};
WRITE_CLASS_ENCODER(fragtree_t)
inline bool operator==(const fragtree_t& l, const fragtree_t& r) {
return l._splits == r._splits;
}
inline bool operator!=(const fragtree_t& l, const fragtree_t& r) {
return l._splits != r._splits;
}
inline std::ostream& operator<<(std::ostream& out, const fragtree_t& ft)
{
out << "fragtree_t(";
for (compact_map<frag_t,int32_t>::const_iterator p = ft._splits.begin();
p != ft._splits.end();
++p) {
if (p != ft._splits.begin())
out << " ";
out << p->first << "^" << p->second;
}
return out << ")";
}
/**
* fragset_t -- a set of fragments
*/
class fragset_t {
std::set<frag_t> _set;
public:
const std::set<frag_t> &get() const { return _set; }
std::set<frag_t>::iterator begin() { return _set.begin(); }
std::set<frag_t>::iterator end() { return _set.end(); }
bool empty() const { return _set.empty(); }
bool contains(frag_t f) const {
while (1) {
if (_set.count(f)) return true;
if (f.bits() == 0) return false;
f = f.parent();
}
}
void insert(frag_t f) {
_set.insert(f);
simplify();
}
void simplify() {
while (1) {
bool clean = true;
std::set<frag_t>::iterator p = _set.begin();
while (p != _set.end()) {
if (!p->is_root() &&
_set.count(p->get_sibling())) {
_set.erase(p->get_sibling());
_set.insert(p->parent());
_set.erase(p++);
clean = false;
} else {
p++;
}
}
if (clean)
break;
}
}
};
inline std::ostream& operator<<(std::ostream& out, const fragset_t& fs)
{
return out << "fragset_t(" << fs.get() << ")";
}
#endif