forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_data_transforms.py
230 lines (189 loc) · 10.2 KB
/
test_data_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import copy
import gzip
import os
import pickle
import numpy as np
import torch
import unittest
from openfold.data.data_transforms import make_seq_mask, add_distillation_flag, make_all_atom_aatype, fix_templates_aatype, \
correct_msa_restypes, squeeze_features, randomly_replace_msa_with_unknown, MSA_FEATURE_NAMES, sample_msa, \
crop_extra_msa, delete_extra_msa, nearest_neighbor_clusters, make_msa_mask, make_hhblits_profile, make_masked_msa, \
make_msa_feat, crop_templates, make_atom14_masks
from tests.config import config
class TestDataTransforms(unittest.TestCase):
def test_make_seq_mask(self):
seq = torch.tensor([range(20)], dtype=torch.int64).transpose(0,1)
seq_one_hot = torch.FloatTensor(seq.shape[0], 20).zero_()
seq_one_hot.scatter_(1, seq, 1)
protein_aatype = seq_one_hot.clone().detach()
protein = {'aatype': protein_aatype}
protein = make_seq_mask(protein)
assert 'seq_mask' in protein
assert protein['seq_mask'].shape == torch.Size((seq.shape[0], 20))
def test_add_distillation_flag(self):
protein = {}
protein = add_distillation_flag.__wrapped__(protein, True)
assert 'is_distillation' in protein
assert protein['is_distillation'] is True
def test_make_all_atom_aatype(self):
seq = torch.tensor([range(20)], dtype=torch.int64).transpose(0, 1)
seq_one_hot = torch.FloatTensor(seq.shape[0], 20).zero_()
seq_one_hot.scatter_(1, seq, 1)
protein_aatype = seq_one_hot.clone().detach()
protein = {'aatype': protein_aatype}
protein = make_all_atom_aatype(protein)
assert 'all_atom_aatype' in protein
assert protein['all_atom_aatype'].shape == protein['aatype'].shape
def test_fix_templates_aatype(self):
template_seq = torch.tensor(list(range(20))*2, dtype=torch.int64)
template_seq = template_seq.unsqueeze(0).transpose(0, 1)
template_seq_one_hot = torch.FloatTensor(template_seq.shape[0], 20).zero_()
template_seq_one_hot.scatter_(1, template_seq, 1)
template_aatype = template_seq_one_hot.clone().detach().unsqueeze(0)
protein = {'template_aatype': template_aatype, 'aatype': template_aatype}
protein = fix_templates_aatype(protein)
template_seq_ours = torch.tensor([[0, 4, 3, 6, 13, 7, 8, 9, 11, 10, 12, 2, 14, 5, 1, 15, 16, 19, 17, 18]*2])
assert torch.all(torch.eq(protein['template_aatype'], template_seq_ours))
def test_correct_msa_restypes(self):
with open("tests/test_data/features.pkl", 'rb') as file:
features = pickle.load(file)
protein = {'msa': torch.tensor(features['msa'], dtype=torch.int64)}
protein = correct_msa_restypes(protein)
assert torch.all(torch.eq(torch.tensor(features['msa'].shape), torch.tensor(protein['msa'].shape)))
def test_squeeze_features(self):
with open("tests/test_data/features.pkl", "rb") as file:
features = pickle.load(file)
features_list = [
'domain_name', 'msa', 'num_alignments', 'seq_length', 'sequence',
'superfamily', 'deletion_matrix', 'resolution',
'between_segment_residues', 'residue_index', 'template_all_atom_mask']
protein = {'aatype': torch.tensor(features['aatype'])}
for k in features_list:
if k in features:
if k in ['domain_name', 'sequence']:
protein[k] = np.expand_dims(features[k], -1)
else:
protein[k] = torch.tensor(features[k]).unsqueeze(-1)
for k in ['seq_length', 'num_alignments']:
if k in protein:
protein[k] = protein[k].clone().detach().unsqueeze(0)
protein_squeezed = squeeze_features(protein)
for k in features_list:
if k in protein:
assert protein_squeezed[k].shape == features[k].shape
def test_randomly_replace_msa_with_unknown(self):
with open('tests/test_data/features.pkl', 'rb') as file:
features = pickle.load(file)
protein = {'msa': torch.tensor(features['msa']),
'aatype': torch.argmax(torch.tensor(features['aatype']), dim=1)}
replace_proportion = 0.15
x_idx = 20
protein = randomly_replace_msa_with_unknown.__wrapped__(protein, replace_proportion)
unknown_proportion_in_msa = torch.bincount(protein['msa'].flatten()) / torch.numel(protein['msa'])
unknown_proportion_in_seq = torch.bincount(protein['aatype'].flatten()) / torch.numel(protein['aatype'])
def test_sample_msa(self):
with open('tests/test_data/features.pkl', 'rb') as file:
features = pickle.load(file)
max_seq = 1000
keep_extra = True
protein = {}
for k in MSA_FEATURE_NAMES:
if k in features:
protein[k] = torch.tensor(features[k])
protein_processed = sample_msa.__wrapped__(protein.copy(), max_seq, keep_extra)
for k in MSA_FEATURE_NAMES:
if k in protein and keep_extra:
assert protein_processed[k].shape[0] == min(protein[k].shape[0], max_seq)
assert 'extra_'+k in protein_processed
assert protein_processed['extra_'+k].shape[0] == protein[k].shape[0] - min(protein[k].shape[0], max_seq)
def test_crop_extra_msa(self):
with open('tests/test_data/features.pkl', 'rb') as file:
features = pickle.load(file)
max_extra_msa = 10
protein = {'extra_msa': torch.tensor(features['msa'])}
num_seq = protein["extra_msa"].shape[0]
protein = crop_extra_msa.__wrapped__(protein, max_extra_msa)
for k in MSA_FEATURE_NAMES:
if "extra_" + k in protein:
assert protein["extra_" + k].shape[0] == min(max_extra_msa, num_seq)
def test_delete_extra_msa(self):
protein = {'extra_msa': torch.rand((512, 100, 23))}
extra_msa_has_deletion_shape = list(protein['extra_msa'].shape)
extra_msa_has_deletion_shape[2] = 1
protein['extra_deletion_matrix'] = torch.rand(extra_msa_has_deletion_shape)
protein = delete_extra_msa(protein)
for k in MSA_FEATURE_NAMES:
assert 'extra_' + k not in protein
assert 'extra_msa' not in protein
def test_nearest_neighbor_clusters(self):
with gzip.open('tests/test_data/sample_feats.pickle.gz', 'rb') as f:
features = pickle.load(f)
protein = {'msa': torch.tensor(features['true_msa'][0], dtype=torch.int64),
'msa_mask': torch.tensor(features['msa_mask'][0], dtype=torch.int64),
'extra_msa': torch.tensor(features['extra_msa'][0], dtype=torch.int64),
'extra_msa_mask': torch.tensor(features['extra_msa_mask'][0], dtype=torch.int64)}
protein = nearest_neighbor_clusters.__wrapped__(protein, 0)
assert 'extra_cluster_assignment' in protein
def test_make_msa_mask(self):
with open('tests/test_data/features.pkl', 'rb') as file:
features = pickle.load(file)
msa_mat = torch.tensor(features['msa'])
protein = {'msa': msa_mat}
protein = make_msa_mask(protein)
assert 'msa_row_mask' in protein
assert protein['msa_row_mask'].shape[0] == msa_mat.shape[0]
def test_make_hhblits_profile(self):
with open('tests/test_data/features.pkl', 'rb') as file:
features = pickle.load(file)
protein = {'msa': torch.tensor(features['msa'], dtype=torch.int64)}
protein = make_hhblits_profile(protein)
assert 'hhblits_profile' in protein
assert protein['hhblits_profile'].shape == torch.Size((protein['msa'].shape[1], 22))
def test_make_masked_msa(self):
with open('tests/test_data/features.pkl', 'rb') as file:
features = pickle.load(file)
protein = {
'msa': torch.tensor(features['msa'], dtype=torch.int64),
'aatype': torch.tensor(features['aatype'], dtype=torch.int64),
}
protein = make_hhblits_profile(protein)
masked_msa_config = config.data.common.masked_msa
protein = make_masked_msa.__wrapped__(protein, masked_msa_config, replace_fraction=0.15)
assert 'bert_mask' in protein
assert 'true_msa' in protein
assert 'msa' in protein
assert protein['bert_mask'].sum() >= 0
assert torch.all(torch.eq(
protein['true_msa'] * (1-protein['bert_mask']), protein['msa'] * (1-protein['bert_mask'])))
def test_make_msa_feat(self):
with open('tests/test_data/features.pkl', 'rb') as file:
features = pickle.load(file)
protein = {'between_segment_residues': torch.tensor(features['between_segment_residues']),
'msa': torch.tensor(features['msa'], dtype=torch.int64),
'deletion_matrix': torch.tensor(features['deletion_matrix_int']),
'aatype': torch.argmax(torch.tensor(features['aatype']), dim=1)}
protein = make_msa_feat.__wrapped__(protein)
assert 'msa_feat' in protein
assert 'target_feat' in protein
assert protein['target_feat'].shape == torch.Size((protein['msa'].shape[1], 22))
assert protein['msa_feat'].shape == torch.Size((*protein['msa'].shape, 25))
def test_crop_templates(self):
with gzip.open('tests/test_data/sample_feats.pickle.gz', 'rb') as f:
features = pickle.load(f)
protein = {'template_aatype': torch.tensor(features['true_msa'][0]),
'template_all_atom_masks': torch.tensor(features['msa_mask'][0])}
max_templates = 2
protein = crop_templates.__wrapped__(protein, max_templates)
assert protein['template_aatype'].shape[0] == max_templates
assert protein['template_all_atom_masks'].shape[0] == max_templates
def test_make_atom14_masks(self):
with gzip.open('tests/test_data/sample_feats.pickle.gz', 'rb') as file:
features = pickle.load(file)
protein = {'aatype': torch.tensor(features['aatype'][0])}
protein = make_atom14_masks(protein)
assert 'atom14_atom_exists' in protein
assert 'residx_atom14_to_atom37' in protein
assert 'residx_atom37_to_atom14' in protein
assert 'atom37_atom_exists' in protein
if __name__ == '__main__':
unittest.main()