Skip to content

Latest commit

 

History

History
255 lines (188 loc) · 7.86 KB

stat.md

File metadata and controls

255 lines (188 loc) · 7.86 KB

统计信息

概念

在 TiDB 中,我们维护的统计信息包括表的总行数,列的等深直方图,Count-Min Sketch,Null 值的个数,平均长度,不同值的数目等等 用于快速估算代价。

等深直方图

相比于等宽直方图,等深直方图在最坏情况下也可以很好的保证误差 等深直方图,就是落入每个桶里的值数量尽量相等。

CMSketch

Count-Min Sketch 是一种可以处理等值查询,Join 大小估计等的数据结构,并且可以提供很强的准确性保证。自 2003 年在文献 An improved data stream summary: The count-min sketch and its applications 中提出以来,由于其创建和使用的简单性获得了广泛的使用。

FMSketch

TiDB中实现

Histogram

一个Histogram对应一个column或者index的统计信息。

// Histogram represents statistics for a column or index.
type Histogram struct {
	ID        int64 // Column ID.
	NDV       int64 // Number of distinct values.
	NullCount int64 // Number of null values.
	// LastUpdateVersion is the version that this histogram updated last time.
	LastUpdateVersion uint64

	Tp *types.FieldType

	// Histogram elements.
	//
	// A bucket bound is the smallest and greatest values stored in the bucket. The lower and upper bound
	// are stored in one column.
	//
	// A bucket count is the number of items stored in all previous buckets and the current bucket.
	// Bucket counts are always in increasing order.
	//
	// A bucket repeat is the number of repeats of the bucket value, it can be used to find popular values.
	Bounds  *chunk.Chunk
	Buckets []Bucket

	// Used for estimating fraction of the interval [lower, upper] that lies within the [lower, value].
	// For some types like `Int`, we do not build it because we can get them directly from `Bounds`.
	scalars []scalar
	// TotColSize is the total column size for the histogram.
	// For unfixed-len types, it includes LEN and BYTE.
	TotColSize int64

	// Correlation is the statistical correlation between physical row ordering and logical ordering of
	// the column values. This ranges from -1 to +1, and it is only valid for Column histogram, not for
	// Index histogram.
	Correlation float64
}

// Bucket store the bucket count and repeat.
type Bucket struct {
	Count  int64
	Repeat int64
}

type scalar struct {
	lower        float64
	upper        float64
	commonPfxLen int // commonPfxLen is the common prefix length of the lower bound and upper bound when the value type is KindString or KindBytes.
}

生成统计信息

AnalyzeExec

在执行 analyze 语句的时候,TiDB 会将 analyze 请求下推到每一个 Region 上,然后将每一个 Region 的结果合并起来。

Analyze 语句

analyzeColumnsPushdown

analyzeIndexPushdown

QueryFeedback

收集QueryFeedback

Datasource对应的一些Executor: TableReaderExecutor, IndexReaderExecutor, IndexLookupExecutor, IndexMergeReaderExecutor 执行时候会生成一些feedback信息

// Feedback represents the total scan count in range [lower, upper).
type Feedback struct {
	Lower  *types.Datum
	Upper  *types.Datum
	Count  int64
	Repeat int64
}
// QueryFeedback is used to represent the query feedback info. It contains the query's scan ranges and number of rows
// in each range.
type QueryFeedback struct {
	PhysicalID int64
	Hist       *Histogram
	Tp         int
	Feedback   []Feedback
	Expected   int64 // Expected is the Expected scan count of corresponding query.
	actual     int64 // actual is the actual scan count of corresponding query.
	Valid      bool  // Valid represents the whether this query feedback is still Valid.
	desc       bool  // desc represents the corresponding query is desc scan.
}

TablesRangesToKVRanges
// TablesRangesToKVRanges converts table ranges to "KeyRange".
func TablesRangesToKVRanges(tids []int64, ranges []*ranger.Range, fb *statistics.QueryFeedback) []kv.KeyRange {
	if fb == nil || fb.Hist == nil {
		return tableRangesToKVRangesWithoutSplit(tids, ranges)
	}
	krs := make([]kv.KeyRange, 0, len(ranges))
	feedbackRanges := make([]*ranger.Range, 0, len(ranges))
	for _, ran := range ranges {
		low := codec.EncodeInt(nil, ran.LowVal[0].GetInt64())
		high := codec.EncodeInt(nil, ran.HighVal[0].GetInt64())
		if ran.LowExclude {
			low = kv.Key(low).PrefixNext()
		}
		// If this range is split by histogram, then the high val will equal to one bucket's upper bound,
		// since we need to guarantee each range falls inside the exactly one bucket, `PrefixNext` will make the
		// high value greater than upper bound, so we store the range here.
		r := &ranger.Range{LowVal: []types.Datum{types.NewBytesDatum(low)},
			HighVal: []types.Datum{types.NewBytesDatum(high)}}
		feedbackRanges = append(feedbackRanges, r)

		if !ran.HighExclude {
			high = kv.Key(high).PrefixNext()
		}
		for _, tid := range tids {
			startKey := tablecodec.EncodeRowKey(tid, low)
			endKey := tablecodec.EncodeRowKey(tid, high)
			krs = append(krs, kv.KeyRange{StartKey: startKey, EndKey: endKey})
		}
	}
	fb.StoreRanges(feedbackRanges)
	return krs
}

这些信息会先插入到一个QueryFeedbackMap的一个队列中, 后面的updateStatsWorker 定期apply 这些feedback到自己的cache中。以及将这些 feedback apply到mysql.stats_*

apply feedback locally

apply feedback

每个TiDB会将本地搜集到的feedback插到mysql.stats_feedback中,然后 由owner将表mysql.stats_feedback插入 mysql.stats_histograms, msyql.stats_buckets等表。

UpdateHistogram

没怎么看明白这块算法。

使用统计信息

加载统计信息

从mysql.stats_*表中加载信息。

每个TiDB server有个goroutine 周期性的更新stat信息 Handle can update stats info periodically.

在TiDB启动时候,会启动一个goroutine, loadStatsWorker

Update, 更新statsCache

加载载table的Histogram和CMSketch tableStatsFromStorage

Selectivity

StatsNode

// StatsNode is used for calculating selectivity.
type StatsNode struct {
	Tp int
	ID int64
	// mask is a bit pattern whose ith bit will indicate whether the ith expression is covered by this index/column.
	mask int64
	// Ranges contains all the Ranges we got.
	Ranges []*ranger.Range
	// Selectivity indicates the Selectivity of this column/index.
	Selectivity float64
	// numCols is the number of columns contained in the index or column(which is always 1).
	numCols int
	// partCover indicates whether the bit in the mask is for a full cover or partial cover. It is only true
	// when the condition is a DNF expression on index, and the expression is not totally extracted as access condition.
	partCover bool
}
// Selectivity is a function calculate the selectivity of the expressions.
// The definition of selectivity is (row count after filter / row count before filter).
// And exprs must be CNF now, in other words, `exprs[0] and exprs[1] and ... and exprs[len - 1]` should be held when you call this.
// Currently the time complexity is o(n^2).

Selectivity:

  1. 计算表达式的ranges: ExtractColumnsFromExpressions

questions:

  1. correlated column 是什么意思?
  2. maskCovered作用是什么
  3. statsNode的作用是什么

参考

  1. TiDB 源码阅读系列文章(十二)统计信息(上)
  2. TiDB 源码阅读系列文章(十四)统计信息(下)
  3. TiDB统计信息原理简介与实践