在 TiDB 中,我们维护的统计信息包括表的总行数,列的等深直方图,Count-Min Sketch,Null 值的个数,平均长度,不同值的数目等等 用于快速估算代价。
相比于等宽直方图,等深直方图在最坏情况下也可以很好的保证误差 等深直方图,就是落入每个桶里的值数量尽量相等。
Count-Min Sketch 是一种可以处理等值查询,Join 大小估计等的数据结构,并且可以提供很强的准确性保证。自 2003 年在文献 An improved data stream summary: The count-min sketch and its applications 中提出以来,由于其创建和使用的简单性获得了广泛的使用。
一个Histogram对应一个column或者index的统计信息。
// Histogram represents statistics for a column or index.
type Histogram struct {
ID int64 // Column ID.
NDV int64 // Number of distinct values.
NullCount int64 // Number of null values.
// LastUpdateVersion is the version that this histogram updated last time.
LastUpdateVersion uint64
Tp *types.FieldType
// Histogram elements.
//
// A bucket bound is the smallest and greatest values stored in the bucket. The lower and upper bound
// are stored in one column.
//
// A bucket count is the number of items stored in all previous buckets and the current bucket.
// Bucket counts are always in increasing order.
//
// A bucket repeat is the number of repeats of the bucket value, it can be used to find popular values.
Bounds *chunk.Chunk
Buckets []Bucket
// Used for estimating fraction of the interval [lower, upper] that lies within the [lower, value].
// For some types like `Int`, we do not build it because we can get them directly from `Bounds`.
scalars []scalar
// TotColSize is the total column size for the histogram.
// For unfixed-len types, it includes LEN and BYTE.
TotColSize int64
// Correlation is the statistical correlation between physical row ordering and logical ordering of
// the column values. This ranges from -1 to +1, and it is only valid for Column histogram, not for
// Index histogram.
Correlation float64
}
// Bucket store the bucket count and repeat.
type Bucket struct {
Count int64
Repeat int64
}
type scalar struct {
lower float64
upper float64
commonPfxLen int // commonPfxLen is the common prefix length of the lower bound and upper bound when the value type is KindString or KindBytes.
}
在执行 analyze 语句的时候,TiDB 会将 analyze 请求下推到每一个 Region 上,然后将每一个 Region 的结果合并起来。
Analyze 语句
Datasource对应的一些Executor: TableReaderExecutor
, IndexReaderExecutor
,
IndexLookupExecutor
, IndexMergeReaderExecutor
执行时候会生成一些feedback信息
// Feedback represents the total scan count in range [lower, upper).
type Feedback struct {
Lower *types.Datum
Upper *types.Datum
Count int64
Repeat int64
}
// QueryFeedback is used to represent the query feedback info. It contains the query's scan ranges and number of rows
// in each range.
type QueryFeedback struct {
PhysicalID int64
Hist *Histogram
Tp int
Feedback []Feedback
Expected int64 // Expected is the Expected scan count of corresponding query.
actual int64 // actual is the actual scan count of corresponding query.
Valid bool // Valid represents the whether this query feedback is still Valid.
desc bool // desc represents the corresponding query is desc scan.
}
// TablesRangesToKVRanges converts table ranges to "KeyRange".
func TablesRangesToKVRanges(tids []int64, ranges []*ranger.Range, fb *statistics.QueryFeedback) []kv.KeyRange {
if fb == nil || fb.Hist == nil {
return tableRangesToKVRangesWithoutSplit(tids, ranges)
}
krs := make([]kv.KeyRange, 0, len(ranges))
feedbackRanges := make([]*ranger.Range, 0, len(ranges))
for _, ran := range ranges {
low := codec.EncodeInt(nil, ran.LowVal[0].GetInt64())
high := codec.EncodeInt(nil, ran.HighVal[0].GetInt64())
if ran.LowExclude {
low = kv.Key(low).PrefixNext()
}
// If this range is split by histogram, then the high val will equal to one bucket's upper bound,
// since we need to guarantee each range falls inside the exactly one bucket, `PrefixNext` will make the
// high value greater than upper bound, so we store the range here.
r := &ranger.Range{LowVal: []types.Datum{types.NewBytesDatum(low)},
HighVal: []types.Datum{types.NewBytesDatum(high)}}
feedbackRanges = append(feedbackRanges, r)
if !ran.HighExclude {
high = kv.Key(high).PrefixNext()
}
for _, tid := range tids {
startKey := tablecodec.EncodeRowKey(tid, low)
endKey := tablecodec.EncodeRowKey(tid, high)
krs = append(krs, kv.KeyRange{StartKey: startKey, EndKey: endKey})
}
}
fb.StoreRanges(feedbackRanges)
return krs
}
这些信息会先插入到一个QueryFeedbackMap的一个队列中,
后面的updateStatsWorker
定期apply 这些feedback到自己的cache中。以及将这些
feedback apply到mysql.stats_*
中
每个TiDB会将本地搜集到的feedback插到mysql.stats_feedback
中,然后
由owner将表mysql.stats_feedback
插入
mysql.stats_histograms
, msyql.stats_buckets
等表。
没怎么看明白这块算法。
从mysql.stats_*表中加载信息。
每个TiDB server有个goroutine 周期性的更新stat信息 Handle can update stats info periodically.
在TiDB启动时候,会启动一个goroutine, loadStatsWorker
Update, 更新statsCache
加载载table的Histogram和CMSketch tableStatsFromStorage
// StatsNode is used for calculating selectivity.
type StatsNode struct {
Tp int
ID int64
// mask is a bit pattern whose ith bit will indicate whether the ith expression is covered by this index/column.
mask int64
// Ranges contains all the Ranges we got.
Ranges []*ranger.Range
// Selectivity indicates the Selectivity of this column/index.
Selectivity float64
// numCols is the number of columns contained in the index or column(which is always 1).
numCols int
// partCover indicates whether the bit in the mask is for a full cover or partial cover. It is only true
// when the condition is a DNF expression on index, and the expression is not totally extracted as access condition.
partCover bool
}
// Selectivity is a function calculate the selectivity of the expressions.
// The definition of selectivity is (row count after filter / row count before filter).
// And exprs must be CNF now, in other words, `exprs[0] and exprs[1] and ... and exprs[len - 1]` should be held when you call this.
// Currently the time complexity is o(n^2).
Selectivity:
- 计算表达式的ranges: ExtractColumnsFromExpressions
questions:
- correlated column 是什么意思?
- maskCovered作用是什么
- statsNode的作用是什么