forked from THUDM/ChatGLM3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient.py
182 lines (154 loc) · 7.59 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from __future__ import annotations
from collections.abc import Iterable
import os
from typing import Any, Protocol
from huggingface_hub.inference._text_generation import TextGenerationStreamResponse, Token
import streamlit as st
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
from conversation import Conversation
TOOL_PROMPT = 'Answer the following questions as best as you can. You have access to the following tools:'
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b')
PT_PATH = os.environ.get('PT_PATH', None)
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
@st.cache_resource
def get_client() -> Client:
client = HFClient(MODEL_PATH, TOKENIZER_PATH, PT_PATH)
return client
class Client(Protocol):
def generate_stream(self,
system: str | None,
tools: list[dict] | None,
history: list[Conversation],
**parameters: Any
) -> Iterable[TextGenerationStreamResponse]:
...
def stream_chat(self, tokenizer, query: str, history: list[tuple[str, str]] = None, role: str = "user",
past_key_values=None, max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
repetition_penalty=1.0, length_penalty=1.0, num_beams=1,
logits_processor=None, return_past_key_values=False, **kwargs):
from transformers.generation.logits_process import LogitsProcessor
from transformers.generation.utils import LogitsProcessorList
class InvalidScoreLogitsProcessor(LogitsProcessor):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if torch.isnan(scores).any() or torch.isinf(scores).any():
scores.zero_()
scores[..., 5] = 5e4
return scores
if history is None:
history = []
if logits_processor is None:
logits_processor = LogitsProcessorList()
logits_processor.append(InvalidScoreLogitsProcessor())
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
tokenizer.get_command("<|observation|>")]
gen_kwargs = {"max_length": max_length,
"do_sample": do_sample,
"top_p": top_p,
"temperature": temperature,
"logits_processor": logits_processor,
"repetition_penalty": repetition_penalty,
"length_penalty": length_penalty,
"num_beams": num_beams,
**kwargs
}
print(gen_kwargs)
if past_key_values is None:
inputs = tokenizer.build_chat_input(query, history=history, role=role)
else:
inputs = tokenizer.build_chat_input(query, role=role)
inputs = inputs.to(self.device)
if past_key_values is not None:
past_length = past_key_values[0][0].shape[0]
if self.transformer.pre_seq_len is not None:
past_length -= self.transformer.pre_seq_len
inputs.position_ids += past_length
attention_mask = inputs.attention_mask
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
inputs['attention_mask'] = attention_mask
history.append({"role": role, "content": query})
print("input_shape>", inputs['input_ids'].shape)
input_sequence_length = inputs['input_ids'].shape[1]
if max_length < input_sequence_length <= self.config.seq_length:
yield "Current input sequence length {} exceeds sequence length set in generation parameters {}. The maximum model sequence length is {}. You may adjust the generation parameter to enable longer chat history.".format(
input_sequence_length, max_length, self.config.seq_length
), history
return
if input_sequence_length > self.config.seq_length:
yield "Current input sequence length {} exceeds maximum model sequence length {}. Unable to generate tokens.".format(
input_sequence_length, self.config.seq_length
), history
return
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
**gen_kwargs):
if return_past_key_values:
outputs, past_key_values = outputs
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
response = tokenizer.decode(outputs)
if response and response[-1] != "�":
new_history = history
if return_past_key_values:
yield response, new_history, past_key_values
else:
yield response, new_history
class HFClient(Client):
def __init__(self, model_path: str, tokenizer_path: str, pt_checkpoint: str | None = None, ):
self.model_path = model_path
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
if pt_checkpoint is not None:
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, pre_seq_len=128)
self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True, config=config)
prefix_state_dict = torch.load(os.path.join(pt_checkpoint, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
print("Loaded from pt checkpoints", new_prefix_state_dict.keys())
self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
else:
self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
self.model = self.model.to(
'cuda' if torch.cuda.is_available() else
'mps' if torch.backends.mps.is_available() else
'cpu'
).eval()
def generate_stream(self,
system: str | None,
tools: list[dict] | None,
history: list[Conversation],
**parameters: Any
) -> Iterable[TextGenerationStreamResponse]:
chat_history = [{
'role': 'system',
'content': system if not tools else TOOL_PROMPT,
}]
if tools:
chat_history[0]['tools'] = tools
for conversation in history[:-1]:
chat_history.append({
'role': str(conversation.role).removeprefix('<|').removesuffix('|>'),
'content': conversation.content,
})
query = history[-1].content
role = str(history[-1].role).removeprefix('<|').removesuffix('|>')
text = ''
for new_text, _ in stream_chat(self.model,
self.tokenizer,
query,
chat_history,
role,
**parameters,
):
word = new_text.removeprefix(text)
word_stripped = word.strip()
text = new_text
yield TextGenerationStreamResponse(
generated_text=text,
token=Token(
id=0,
logprob=0,
text=word,
special=word_stripped.startswith('<|') and word_stripped.endswith('|>'),
)
)