forked from 10XGenomics/seurat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NormalizeData.Rd
62 lines (51 loc) · 1.91 KB
/
NormalizeData.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/generics.R, R/preprocessing.R
\name{NormalizeData}
\alias{NormalizeData}
\alias{NormalizeData.default}
\alias{NormalizeData.Assay}
\alias{NormalizeData.Seurat}
\title{Normalize Data}
\usage{
NormalizeData(object, ...)
\method{NormalizeData}{default}(object,
normalization.method = "LogNormalize", scale.factor = 10000,
margin = 1, block.size = NULL, verbose = TRUE, ...)
\method{NormalizeData}{Assay}(object,
normalization.method = "LogNormalize", scale.factor = 10000,
margin = 1, verbose = TRUE, ...)
\method{NormalizeData}{Seurat}(object, assay = NULL,
normalization.method = "LogNormalize", scale.factor = 10000,
margin = 1, verbose = TRUE, ...)
}
\arguments{
\item{object}{An object}
\item{...}{Arguments passed to other methods}
\item{normalization.method}{Method for normalization.
\itemize{
\item{LogNormalize: }{Feature counts for each cell are divided by the total
counts for that cell and multiplied by the scale.factor. This is then
natural-log transformed using log1p.}
\item{CLR: }{Applies a centered log ratio transformation}
\item{RC: }{Relative counts. Feature counts for each cell are divided by the total
counts for that cell and multiplied by the scale.factor. No log-transformation is applied.
For counts per million (CPM) set \code{scale.factor = 1e6}}
}}
\item{scale.factor}{Sets the scale factor for cell-level normalization}
\item{margin}{If performing CLR normalization, normalize across features (1) or cells (2)}
\item{block.size}{How many cells should be run in each chunk, will try to split evenly across threads}
\item{verbose}{display progress bar for normalization procedure}
\item{assay}{Name of assay to use}
}
\value{
Returns object after normalization
}
\description{
Normalize the count data present in a given assay.
}
\examples{
\dontrun{
pbmc_small
pmbc_small <- NormalizeData(object = pbmc_small)
}
}