forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAP_MotorsUGV.h
191 lines (147 loc) · 7.5 KB
/
AP_MotorsUGV.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#pragma once
#include "defines.h"
#include "AP_Arming.h"
#include <AP_ServoRelayEvents/AP_ServoRelayEvents.h>
class AP_MotorsUGV {
public:
// Constructor
AP_MotorsUGV(AP_ServoRelayEvents &relayEvents);
enum pwm_type {
PWM_TYPE_NORMAL = 0,
PWM_TYPE_ONESHOT = 1,
PWM_TYPE_ONESHOT125 = 2,
PWM_TYPE_BRUSHED_WITH_RELAY = 3,
PWM_TYPE_BRUSHED_BIPOLAR = 4,
PWM_TYPE_DSHOT150 = 5,
PWM_TYPE_DSHOT300 = 6,
PWM_TYPE_DSHOT600 = 7,
PWM_TYPE_DSHOT1200 = 8
};
enum motor_test_order {
MOTOR_TEST_THROTTLE = 1,
MOTOR_TEST_STEERING = 2,
MOTOR_TEST_THROTTLE_LEFT = 3,
MOTOR_TEST_THROTTLE_RIGHT = 4,
MOTOR_TEST_MAINSAIL = 5,
MOTOR_TEST_LAST
};
// supported omni motor configurations
enum frame_type {
FRAME_TYPE_UNDEFINED = 0,
FRAME_TYPE_OMNI3 = 1,
FRAME_TYPE_OMNIX = 2,
FRAME_TYPE_OMNIPLUS = 3,
};
// initialise motors
void init();
// return true if motors are active
bool active() const;
// setup output in case of main CPU failure
void setup_safety_output();
// setup servo output ranges
void setup_servo_output();
// get or set steering as a value from -4500 to +4500
// apply_scaling should be set to false for manual modes where
// no scaling by speed or angle should e performed
float get_steering() const { return _steering; }
void set_steering(float steering, bool apply_scaling = true);
// get or set throttle as a value from -100 to 100
float get_throttle() const { return _throttle; }
void set_throttle(float throttle);
// set lateral input as a value from -100 to +100
void set_lateral(float lateral);
// set or get mainsail input as a value from 0 to 100
void set_mainsail(float mainsail);
float get_mainsail() const { return _mainsail; }
// set or get wingsail input as a value from -100 to 100
void set_wingsail(float wingsail);
float get_wingsail() const { return _wingsail; }
// get slew limited throttle
// used by manual mode to avoid bad steering behaviour during transitions from forward to reverse
// same as private slew_limit_throttle method (see below) but does not update throttle state
float get_slew_limited_throttle(float throttle, float dt) const;
// true if vehicle is capable of skid steering
bool have_skid_steering() const;
// true if vehicle has vectored thrust (i.e. boat with motor on steering servo)
bool have_vectored_thrust() const { return is_positive(_vector_throttle_base); }
// output to motors and steering servos
// ground_speed should be the vehicle's speed over the surface in m/s
// dt should be expected time between calls to this function
void output(bool armed, float ground_speed, float dt);
// test steering or throttle output as a percentage of the total (range -100 to +100)
// used in response to DO_MOTOR_TEST mavlink command
bool output_test_pct(motor_test_order motor_seq, float pct);
// test steering or throttle output using a pwm value
bool output_test_pwm(motor_test_order motor_seq, float pwm);
// returns true if checks pass, false if they fail. display_failure argument should be true to send text messages to GCS
bool pre_arm_check(bool report) const;
// structure for holding motor limit flags
struct AP_MotorsUGV_limit {
uint8_t steer_left : 1; // we have reached the steering controller's left most limit
uint8_t steer_right : 1; // we have reached the steering controller's right most limit
uint8_t throttle_lower : 1; // we have reached throttle's lower limit
uint8_t throttle_upper : 1; // we have reached throttle's upper limit
} limit;
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
// sanity check parameters
void sanity_check_parameters();
// setup pwm output type
void setup_pwm_type();
// setup for frames with omni motors
void setup_omni();
// add omni motor using separate throttle, steering and lateral factors
void add_omni_motor(int8_t motor_num, float throttle_factor, float steering_factor, float lateral_factor);
// add a motor and set up output function
void add_omni_motor_num(int8_t motor_num);
// disable omni motor and remove all throttle, steering and lateral factor for this motor
void clear_omni_motors(int8_t motor_num);
// output to regular steering and throttle channels
void output_regular(bool armed, float ground_speed, float steering, float throttle);
// output to skid steering channels
void output_skid_steering(bool armed, float steering, float throttle, float dt);
// output for omni motors
void output_omni(bool armed, float steering, float throttle, float lateral);
// output throttle (-100 ~ +100) to a throttle channel. Sets relays if required
// dt is the main loop time interval and is required when rate control is required
void output_throttle(SRV_Channel::Aux_servo_function_t function, float throttle, float dt = 0.0f);
// output for sailboat's mainsail in the range of 0 to 100 and wing sail in the range +- 100
void output_sail();
// true if the vehicle has a mainsail or wing sail
bool has_sail() const;
// slew limit throttle for one iteration
void slew_limit_throttle(float dt);
// set limits based on steering and throttle input
void set_limits_from_input(bool armed, float steering, float throttle);
// scale a throttle using the _thrust_curve_expo parameter. throttle should be in the range -100 to +100
float get_scaled_throttle(float throttle) const;
// use rate controller to achieve desired throttle
float get_rate_controlled_throttle(SRV_Channel::Aux_servo_function_t function, float throttle, float dt);
// external references
AP_ServoRelayEvents &_relayEvents;
static const int8_t AP_MOTORS_NUM_MOTORS_MAX = 4;
// parameters
AP_Int8 _pwm_type; // PWM output type
AP_Int8 _pwm_freq; // PWM output freq for brushed motors
AP_Int8 _disarm_disable_pwm; // disable PWM output while disarmed
AP_Int16 _slew_rate; // slew rate expressed as a percentage / second
AP_Int8 _throttle_min; // throttle minimum percentage
AP_Int8 _throttle_max; // throttle maximum percentage
AP_Float _thrust_curve_expo; // thrust curve exponent from -1 to +1 with 0 being linear
AP_Float _vector_throttle_base; // throttle level above which steering is scaled down when using vector thrust. zero to disable vectored thrust
AP_Float _speed_scale_base; // speed above which steering is scaled down when using regular steering/throttle vehicles. zero to disable speed scaling
// internal variables
float _steering; // requested steering as a value from -4500 to +4500
float _throttle; // requested throttle as a value from -100 to 100
float _throttle_prev; // throttle input from previous iteration
bool _scale_steering = true; // true if we should scale steering by speed or angle
float _lateral; // requested lateral input as a value from -100 to +100
float _mainsail; // requested mainsail input as a value from 0 to 100
float _wingsail; // requested wing sail input as a value in the range +- 100
// omni variables
float _throttle_factor[AP_MOTORS_NUM_MOTORS_MAX];
float _steering_factor[AP_MOTORS_NUM_MOTORS_MAX];
float _lateral_factor[AP_MOTORS_NUM_MOTORS_MAX];
uint8_t _motors_num;
};