-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtrain.py
217 lines (209 loc) · 9.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/env python
import os, sys, time
import shutil
import argparse
import numpy as np
import torch
from torch.autograd import Variable
from torchvision.datasets import ImageFolder, CIFAR10
import torchvision.transforms as tfs
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from miscs.pgd import attack_Linf_PGD, attack_FGSM
from miscs.loss import *
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, required=True)
parser.add_argument('--nz', type=int, required=True)
parser.add_argument('--ngf', type=int, required=True)
parser.add_argument('--ndf', type=int, required=True)
parser.add_argument('--nclass', type=int, required=True)
parser.add_argument('--batch_size', type=int, required=True)
parser.add_argument('--start_width', type=int, required=True)
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--root', type=str, required=True)
parser.add_argument('--img_width', type=int, required=True)
parser.add_argument('--iter_d', type=int, default=5)
parser.add_argument('--out_f', type=str, required=True)
parser.add_argument('--ngpu', type=int, required=True)
parser.add_argument('--workers', type=int, default=3)
parser.add_argument('--starting_epoch', type=int, default=0)
parser.add_argument('--max_epoch', type=int, required=True)
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--adv_steps', type=int, required=True)
parser.add_argument('--epsilon', type=float, required=True)
parser.add_argument('--our_loss', action='store_true', default=False)
opt = parser.parse_args()
def load_models():
if opt.model == "resnet_32":
from gen_models.resnet_32 import ResNetGenerator
from dis_models.resnet_32 import ResNetAC
gen = ResNetGenerator(ch=opt.ngf, dim_z=opt.nz, bottom_width=opt.start_width, n_classes=opt.nclass)
dis = ResNetAC(ch=opt.ndf, n_classes=opt.nclass, bn=True)
elif opt.model == "resnet_64":
from gen_models.resnet_64 import ResNetGenerator
from dis_models.resnet_64 import ResNetAC
gen = ResNetGenerator(ch=opt.ngf, dim_z=opt.nz, bottom_width=opt.start_width, n_classes=opt.nclass)
dis = ResNetAC(ch=opt.ndf, n_classes=opt.nclass)
elif opt.model == "resnet_128":
from gen_models.resnet_small import ResNetGenerator
from dis_models.resnet_small import ResNetAC
gen = ResNetGenerator(ch=opt.ngf, dim_z=opt.nz, bottom_width=opt.start_width, n_classes=opt.nclass)
dis = ResNetAC(ch=opt.ndf, n_classes=opt.nclass)
elif opt.model == "resnet_imagenet":
from gen_models.resnet import ResNetGenerator
from dis_models.resnet import ResNetAC
gen = ResNetGenerator(ch=opt.ngf, dim_z=opt.nz, bottom_width=opt.start_width, n_classes=opt.nclass)
dis = ResNetAC(ch=opt.ndf, n_classes=opt.nclass, bn=True)
else:
raise ValueError(f"Unknown model name: {opt.model}")
if opt.ngpu > 0:
gen, dis = gen.cuda(), dis.cuda()
gen, dis = torch.nn.DataParallel(gen, device_ids=range(opt.ngpu)), \
torch.nn.DataParallel(dis, device_ids=range(opt.ngpu))
else:
raise ValueError("Must run on gpus, ngpu > 0")
if opt.starting_epoch > 0:
gen.load_state_dict(torch.load(f'./{opt.out_f}/gen_epoch_{opt.starting_epoch-1}.pth'))
dis.load_state_dict(torch.load(f'./{opt.out_f}/dis_epoch_{opt.starting_epoch-1}.pth'))
return gen, dis
def get_loss():
return loss_nll, loss_nll
def make_optimizer(model, beta1=0, beta2=0.9):
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, betas=(beta1, beta2))
return optimizer
def make_dataset():
# Small noise is added, following SN-GAN
def noise(x):
return x + torch.FloatTensor(x.size()).uniform_(0, 1.0 / 128)
if opt.dataset == "cifar10":
trans = tfs.Compose([
tfs.RandomCrop(opt.img_width, padding=4),
tfs.RandomHorizontalFlip(),
tfs.ToTensor(),
tfs.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]),
tfs.Lambda(noise)])
data = CIFAR10(root=opt.root, train=True, download=False, transform=trans)
loader = DataLoader(data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
elif opt.dataset == "dog_and_cat_64":
trans = tfs.Compose([
tfs.RandomResizedCrop(opt.img_width, scale=(0.8, 0.9), ratio=(1.0, 1.0)),
tfs.RandomHorizontalFlip(),
tfs.ToTensor(),
tfs.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]),
tfs.Lambda(noise)])
data = ImageFolder(opt.root, transform=trans)
loader = DataLoader(data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
elif opt.dataset == "dog_and_cat_128":
trans = tfs.Compose([
tfs.RandomResizedCrop(opt.img_width, scale=(0.8, 0.9), ratio=(1.0, 1.0)),
tfs.RandomHorizontalFlip(),
tfs.ToTensor(),
tfs.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]),
tfs.Lambda(noise)])
data = ImageFolder(opt.root, transform=trans)
loader = DataLoader(data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
elif opt.dataset == "imagenet":
trans = tfs.Compose([
tfs.RandomResizedCrop(opt.img_width, scale=(0.8, 0.9), ratio=(1.0, 1.0)),
tfs.RandomHorizontalFlip(),
tfs.ToTensor(),
tfs.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]),
tfs.Lambda(noise)])
data = ImageFolder(opt.root, transform=trans)
loader = DataLoader(data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers)
else:
raise ValueError(f"Unknown dataset: {opt.dataset}")
return loader
def train():
# models
gen, dis = load_models()
# optimizers
opt_g, opt_d = make_optimizer(gen), make_optimizer(dis)
# data
train_loader = make_dataset()
# buffer:
# gaussian noise
z = torch.FloatTensor(opt.batch_size, opt.nz).cuda()
fixed_z = Variable(torch.FloatTensor(8 * 10, opt.nz).normal_(0, 1).cuda())
# random label
y_fake = torch.LongTensor(opt.batch_size).cuda()
np_y = np.arange(10)
np_y = np.repeat(np_y, 8)
fixed_y_fake = Variable(torch.from_numpy(np_y).cuda())
# fixed label
zeros = Variable(torch.FloatTensor(opt.batch_size).fill_(0).cuda())
ones = Variable(torch.FloatTensor(opt.batch_size).fill_(1).cuda())
# loss
Ld, Lg = get_loss()
# start training
for epoch in range(opt.starting_epoch, opt.starting_epoch + opt.max_epoch):
for count, (x_real, y_real) in enumerate(train_loader):
if count % opt.iter_d == 0:
# update generator for every iter_d iterations
gen.zero_grad()
# sample noise
z.normal_(0, 1)
vz = Variable(z)
y_fake.random_(0, to=opt.nclass)
v_y_fake = Variable(y_fake)
v_x_fake = gen(vz, y=v_y_fake)
v_x_fake_adv = v_x_fake
d_fake_bin, d_fake_multi = dis(v_x_fake_adv)
ones.data.resize_as_(d_fake_bin.data)
loss_g = Lg(d_fake_bin, ones, d_fake_multi, v_y_fake, lam=0.5)
loss_g.backward()
opt_g.step()
print(f'[{epoch}/{opt.max_epoch-1}][{count+1}/{len(train_loader)}][G_ITER] loss_g: {loss_g.item()}')
# update discriminator
dis.zero_grad()
# feed real data
x_real, y_real = x_real.cuda(), y_real.cuda()
v_x_real, v_y_real = Variable(x_real), Variable(y_real)
# find adversarial example
ones.data.resize_(y_real.size())
v_x_real_adv = attack_Linf_PGD(v_x_real, ones, v_y_real, dis, Ld, opt.adv_steps, opt.epsilon)
d_real_bin, d_real_multi = dis(v_x_real_adv)
# accuracy for real images
positive = torch.sum(d_real_bin.data > 0).item()
_, idx = torch.max(d_real_multi.data, dim=1)
correct_real = torch.sum(idx.eq(y_real)).item()
total_real = y_real.numel()
# loss for real images
loss_d_real = Ld(d_real_bin, ones, d_real_multi, v_y_real, lam=0.5)
# feed fake data
z.normal_(0, 1)
y_fake.random_(0, to=opt.nclass)
vz, v_y_fake = Variable(z), Variable(y_fake)
with torch.no_grad():
v_x_fake = gen(vz, y=v_y_fake)
d_fake_bin, d_fake_multi = dis(v_x_fake.detach())
# accuracy for fake images
negative = torch.sum(d_fake_bin.data > 0).item()
_, idx = torch.max(d_fake_multi.data, dim=1)
correct_fake = torch.sum(idx.eq(y_fake)).item()
total_fake = y_fake.numel()
# loss for fake images
if opt.our_loss:
loss_d_fake = Ld(d_fake_bin, zeros, d_fake_multi, v_y_fake, lam=1)
else:
loss_d_fake = Ld(d_fake_bin, zeros, d_fake_multi, v_y_fake, lam=0.5)
loss_d = loss_d_real + loss_d_fake
loss_d.backward()
opt_d.step()
print(f'[{epoch}/{opt.max_epoch-1}][{count+1}/{len(train_loader)}][D_ITER] loss_d: {loss_d.item()} acc_r: {positive/total_real}, acc_r@1: {correct_real/total_real}, acc_f: {negative/total_fake}, acc_f@1: {correct_fake/total_fake}')
# generate samples
with torch.no_grad():
fixed_x_fake = gen(fixed_z, y=fixed_y_fake)
fixed_x_fake.data.mul_(0.5).add_(0.5)
x_real.mul_(0.5).add_(0.5)
save_image(fixed_x_fake.data, f'./{opt.out_f}/sample_epoch_{epoch}.png', nrow=8)
save_image(x_real, f'./{opt.out_f}/real.png')
# save model
torch.save(dis.state_dict(), f'./{opt.out_f}/dis_epoch_{epoch}.pth')
torch.save(gen.state_dict(), f'./{opt.out_f}/gen_epoch_{epoch}.pth')
# change step size
if (epoch + 1) % 50 == 0:
opt.lr /= 2
opt_g, opt_d = make_optimizer(gen), make_optimizer(dis)
if __name__ == "__main__":
train()