forked from jhlau/topic_interpretability
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenSVMInput.py
251 lines (207 loc) · 7.16 KB
/
GenSVMInput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""
Generates SVM input file, containing PMI, condprob, etc features.
Usage: GenSVMInput.py <topic> <testing type> [normalised_pmi=True(1), default=False(0)]
Stdin: N/A
Stdout: SVM input file (orig.dat)
Other Input: pos_file, cbc_file, topic_file, topic_file_lemmatized, intruder_file,
hypernym_files, meronym_files, wordcount_files
Other Output: N/A
Author: Jey Han Lau
Date: Apr 10
"""
import sys
import argparse
import operator
import pickle
import subprocess
import math
from collections import defaultdict
#parser arguments
desc = "Generates the feature files for SVM rank."
parser = argparse.ArgumentParser(description=desc)
#####################
#positional argument#
#####################
parser.add_argument("topic_file", help="file that contains the topics")
parser.add_argument("intruder_file", help="file that contains the intruder words for the topics")
parser.add_argument("pmi_type", help="pmi or normalised pmi", choices=["pmi","npmi"])
parser.add_argument("wordcount_file", help="file that contains the word counts")
args = parser.parse_args()
#parameters
debug = False
#input
topic_file = open(args.topic_file)
intruder_file = open(args.intruder_file)
wc_file = open(args.wordcount_file)
#global variables
topics = [] #a list of topics, with each topic being a list of words
intruders = [] #a list of human best words for each topic
wordcount = {} #a dictionary of word counts
window_total = 0
normalised_pmi = False
if args.pmi_type == "npmi":
normalised_pmi = True
#constants
WTOTALKEY = "!!<TOTAL_WINDOWS>!!" #key name for total number of windows (in wordcount)
###########
#functions#
###########
#conditional probability
#p(x|y) = p(x, y)/p(y)
def calc_condprob(f_xy, f_y):
f_xy = float(f_xy)
f_y = float(f_y)
if f_y == 0:
return 0.0
return f_xy/f_y
#calculate the pointwise mutual information score
#log( P(xy) / (P(x*)*P(*y)) )
#if normalise, divide result by (-log P(xy))
def calc_pmi(f_x, f_y, f_xy):
f_x = float(f_x)
f_y = float(f_y)
f_xy = float(f_xy)
if (f_x == 0) or (f_y == 0) or (f_xy == 0):
return 0.0
result = (math.log((f_xy*window_total)/(f_x*f_y), 2))
if normalised_pmi:
result = result / (-1.0*math.log(f_xy/window_total, 2))
return result
def get_wc(word):
if word in wordcount:
return wordcount[word]
else:
return 0
def get_wc2(w1, w2):
if w1 == w2:
return get_wc(w1)
combined = ""
if w1 > w2:
combined = w2 + "|" + w1
else:
combined = w1 + "|" + w2
if combined in wordcount:
return wordcount[combined]
else:
return 0
def get_word_pos(bestword, target_word):
if target_word == bestword:
return 2
else:
return 1
def normalize(val, min, max):
#result = (((1-alpha)*(float(val) - float(min)) + alpha) / (float(max) - float(min)))
#result = (float(val) - float(min) + alpha) / (float(max) - float(min) + alpha)
if max == min:
return val
result = (float(val) - float(min)) / (float(max) - float(min))
if debug:
print "\n\t\tnormalizing: val =", val, " min =", min, " max =", max
print "\t\t\tresult =", result
return result
######
#main#
######
#process topic_file
for line in topic_file.readlines():
topics.append(line.strip().split())
#process intruder_file
for line in intruder_file.readlines():
intruders.append(int(line.strip())-1)
#process the word count file(s)
for line in wc_file:
line = line.strip()
data = line.split("|")
if len(data) == 2:
wordcount[data[0]] = int(data[1])
elif len(data) == 3:
if data[0] < data[1]:
key = data[0] + "|" + data[1]
else:
key = data[1] + "|" + data[0]
wordcount[key] = int(data[2])
else:
print "ERROR: wordcount format incorrect. Line =", line
raise SystemExit
#get the total number of windows
if WTOTALKEY in wordcount:
window_total = wordcount[WTOTALKEY]
for i, topic_list in enumerate(topics):
intruder_id = intruders[i]
intruder_word = topic_list[intruder_id]
#calculate the feature values
cp1 = defaultdict(lambda:defaultdict(float))
cp2 = defaultdict(lambda:defaultdict(float))
pmi = defaultdict(lambda:defaultdict(float))
#store the values (for finding min and max later)
pmi_values = []
cp1_values = []
cp2_values = []
#calculate the cond probabilities
for j, w1 in enumerate(topic_list):
if debug:
print "\nword1 =", w1
for k, w2 in enumerate(topic_list):
if j!= k:
cp1[w1][w2] = calc_condprob(get_wc2(w1, w2), get_wc(w2))
cp2[w1][w2] = calc_condprob(get_wc2(w1, w2), get_wc(w1))
pmi[w1][w2] = calc_pmi(get_wc(w1), get_wc(w2), get_wc2(w1, w2))
cp1_values.append(cp1[w1][w2])
cp2_values.append(cp2[w1][w2])
pmi_values.append(pmi[w1][w2])
if debug:
print "\tword2 =", w2
print "\t\ttype1 =", cp1[w1][w2], "\ttype2 =", cp2[w1][w2]
#print the topic features
wordlist = [intruder_word]
for topic_word in topic_list:
if topic_word not in wordlist:
wordlist.append(topic_word)
#get the min and max values of the features
pmi_min = min(pmi_values)
pmi_max = max(pmi_values)
cp1_min = min(cp1_values)
cp1_max = max(cp1_values)
cp2_min = min(cp2_values)
cp2_max = max(cp2_values)
if debug:
print "pmi_max =", pmi_max, "\tpmi_min =", pmi_min
print "condprob_type1_max =", cp1_max , "\tmin =", cp1_min
print "condprob_type2_max =", cp2_max, "\tmin =", cp2_min
#print the features
for target_word in wordlist:
print get_word_pos(intruder_word, target_word),
print "qid:" + str(i+1),
feature_id = 1
#pmi, condprob features with other words
for topic_word in topic_list:
if target_word == topic_word:
continue
if debug:
print "\n\nPair = (", target_word, topic_word, ")"
#pmi feature
val = 0.0
if target_word != topic_word:
val = normalize(pmi[topic_word][target_word], pmi_min, pmi_max)
if debug:
print "#pmi(" + target_word + "," + topic_word + ")",
print str(feature_id) + ":" + str(val),
feature_id += 1
#cp1 feature
val = 0.0
if target_word != topic_word:
val = normalize(cp1[target_word][topic_word], cp1_min, cp1_max)
if debug:
print "#P(" + target_word + "|" + topic_word + ")",
print str(feature_id) + ":" + str(val),
feature_id += 1
#cp2 feature
val = 0.0
if target_word != topic_word:
val = normalize(cp2[target_word][topic_word], cp2_min, cp2_max)
if debug:
print "#P(" + topic_word + "|" + target_word + ")",
print str(feature_id) + ":" + str(val),
feature_id += 1
#comment for the target word
print "#" + target_word