forked from zhaoweicai/cascade-rcnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net.hpp
345 lines (320 loc) · 12.3 KB
/
net.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
#ifndef CAFFE_NET_HPP_
#define CAFFE_NET_HPP_
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Connects Layer%s together into a directed acyclic graph (DAG)
* specified by a NetParameter.
*
* TODO(dox): more thorough description.
*/
template <typename Dtype>
class Net {
public:
explicit Net(const NetParameter& param);
explicit Net(const string& param_file, Phase phase,
const int level = 0, const vector<string>* stages = NULL);
virtual ~Net() {}
/// @brief Initialize a network with a NetParameter.
void Init(const NetParameter& param);
/**
* @brief Run Forward and return the result.
*
*/
const vector<Blob<Dtype>*>& Forward(Dtype* loss = NULL);
/// @brief DEPRECATED; use Forward() instead.
const vector<Blob<Dtype>*>& ForwardPrefilled(Dtype* loss = NULL) {
LOG_EVERY_N(WARNING, 1000) << "DEPRECATED: ForwardPrefilled() "
<< "will be removed in a future version. Use Forward().";
return Forward(loss);
}
/**
* The From and To variants of Forward and Backward operate on the
* (topological) ordering by which the net is specified. For general DAG
* networks, note that (1) computing from one layer to another might entail
* extra computation on unrelated branches, and (2) computation starting in
* the middle may be incorrect if all of the layers of a fan-in are not
* included.
*/
Dtype ForwardFromTo(int start, int end);
Dtype ForwardFrom(int start);
Dtype ForwardTo(int end);
/// @brief DEPRECATED; set input blobs then use Forward() instead.
const vector<Blob<Dtype>*>& Forward(const vector<Blob<Dtype>* > & bottom,
Dtype* loss = NULL);
/**
* @brief Zeroes out the diffs of all net parameters.
* Should be run before Backward.
*/
void ClearParamDiffs();
/**
* The network backward should take no input and output, since it solely
* computes the gradient w.r.t the parameters, and the data has already been
* provided during the forward pass.
*/
void Backward();
void BackwardFromTo(int start, int end);
void BackwardFrom(int start);
void BackwardTo(int end);
/**
* @brief Reshape all layers from bottom to top.
*
* This is useful to propagate changes to layer sizes without running
* a forward pass, e.g. to compute output feature size.
*/
void Reshape();
Dtype ForwardBackward() {
Dtype loss;
Forward(&loss);
Backward();
return loss;
}
/// @brief Updates the network weights based on the diff values computed.
void Update();
/**
* @brief Shares weight data of owner blobs with shared blobs.
*
* Note: this is called by Net::Init, and thus should normally not be
* called manually.
*/
void ShareWeights();
/**
* @brief For an already initialized net, implicitly copies (i.e., using no
* additional memory) the pre-trained layers from another Net.
*/
void ShareTrainedLayersWith(const Net* other);
// For an already initialized net, CopyTrainedLayersFrom() copies the already
// trained layers from another net parameter instance.
/**
* @brief For an already initialized net, copies the pre-trained layers from
* another Net.
*/
void CopyTrainedLayersFrom(const NetParameter& param);
void CopyTrainedLayersFrom(const string trained_filename);
void CopyTrainedLayersFromBinaryProto(const string trained_filename);
void CopyTrainedLayersFromHDF5(const string trained_filename);
/// @brief Writes the net to a proto.
void ToProto(NetParameter* param, bool write_diff = false) const;
/// @brief Writes the net to an HDF5 file.
void ToHDF5(const string& filename, bool write_diff = false) const;
/// @brief returns the network name.
inline const string& name() const { return name_; }
/// @brief returns the layer names
inline const vector<string>& layer_names() const { return layer_names_; }
/// @brief returns the blob names
inline const vector<string>& blob_names() const { return blob_names_; }
/// @brief returns the blobs
inline const vector<shared_ptr<Blob<Dtype> > >& blobs() const {
return blobs_;
}
/// @brief returns the layers
inline const vector<shared_ptr<Layer<Dtype> > >& layers() const {
return layers_;
}
/// @brief returns the phase: TRAIN or TEST
inline Phase phase() const { return phase_; }
/**
* @brief returns the bottom vecs for each layer -- usually you won't
* need this unless you do per-layer checks such as gradients.
*/
inline const vector<vector<Blob<Dtype>*> >& bottom_vecs() const {
return bottom_vecs_;
}
/**
* @brief returns the top vecs for each layer -- usually you won't
* need this unless you do per-layer checks such as gradients.
*/
inline const vector<vector<Blob<Dtype>*> >& top_vecs() const {
return top_vecs_;
}
/// @brief returns the ids of the top blobs of layer i
inline const vector<int> & top_ids(int i) const {
CHECK_GE(i, 0) << "Invalid layer id";
CHECK_LT(i, top_id_vecs_.size()) << "Invalid layer id";
return top_id_vecs_[i];
}
/// @brief returns the ids of the bottom blobs of layer i
inline const vector<int> & bottom_ids(int i) const {
CHECK_GE(i, 0) << "Invalid layer id";
CHECK_LT(i, bottom_id_vecs_.size()) << "Invalid layer id";
return bottom_id_vecs_[i];
}
inline const vector<vector<bool> >& bottom_need_backward() const {
return bottom_need_backward_;
}
inline const vector<Dtype>& blob_loss_weights() const {
return blob_loss_weights_;
}
inline const vector<bool>& layer_need_backward() const {
return layer_need_backward_;
}
/// @brief returns the parameters
inline const vector<shared_ptr<Blob<Dtype> > >& params() const {
return params_;
}
inline const vector<Blob<Dtype>*>& learnable_params() const {
return learnable_params_;
}
/// @brief returns the learnable parameter learning rate multipliers
inline const vector<float>& params_lr() const { return params_lr_; }
inline const vector<bool>& has_params_lr() const { return has_params_lr_; }
/// @brief returns the learnable parameter decay multipliers
inline const vector<float>& params_weight_decay() const {
return params_weight_decay_;
}
inline const vector<bool>& has_params_decay() const {
return has_params_decay_;
}
const map<string, int>& param_names_index() const {
return param_names_index_;
}
inline const vector<int>& param_owners() const { return param_owners_; }
inline const vector<string>& param_display_names() const {
return param_display_names_;
}
/// @brief Input and output blob numbers
inline int num_inputs() const { return net_input_blobs_.size(); }
inline int num_outputs() const { return net_output_blobs_.size(); }
inline const vector<Blob<Dtype>*>& input_blobs() const {
return net_input_blobs_;
}
inline const vector<Blob<Dtype>*>& output_blobs() const {
return net_output_blobs_;
}
inline const vector<int>& input_blob_indices() const {
return net_input_blob_indices_;
}
inline const vector<int>& output_blob_indices() const {
return net_output_blob_indices_;
}
bool has_blob(const string& blob_name) const;
const shared_ptr<Blob<Dtype> > blob_by_name(const string& blob_name) const;
bool has_layer(const string& layer_name) const;
const shared_ptr<Layer<Dtype> > layer_by_name(const string& layer_name) const;
void set_debug_info(const bool value) { debug_info_ = value; }
// Helpers for Init.
/**
* @brief Remove layers that the user specified should be excluded given the current
* phase, level, and stage.
*/
static void FilterNet(const NetParameter& param,
NetParameter* param_filtered);
/// @brief return whether NetState state meets NetStateRule rule
static bool StateMeetsRule(const NetState& state, const NetStateRule& rule,
const string& layer_name);
// Invoked at specific points during an iteration
class Callback {
protected:
virtual void run(int layer) = 0;
template <typename T>
friend class Net;
};
const vector<Callback*>& before_forward() const { return before_forward_; }
void add_before_forward(Callback* value) {
before_forward_.push_back(value);
}
const vector<Callback*>& after_forward() const { return after_forward_; }
void add_after_forward(Callback* value) {
after_forward_.push_back(value);
}
const vector<Callback*>& before_backward() const { return before_backward_; }
void add_before_backward(Callback* value) {
before_backward_.push_back(value);
}
const vector<Callback*>& after_backward() const { return after_backward_; }
void add_after_backward(Callback* value) {
after_backward_.push_back(value);
}
protected:
// Helpers for Init.
/// @brief Append a new top blob to the net.
void AppendTop(const NetParameter& param, const int layer_id,
const int top_id, set<string>* available_blobs,
map<string, int>* blob_name_to_idx);
/// @brief Append a new bottom blob to the net.
int AppendBottom(const NetParameter& param, const int layer_id,
const int bottom_id, set<string>* available_blobs,
map<string, int>* blob_name_to_idx);
/// @brief Append a new parameter blob to the net.
void AppendParam(const NetParameter& param, const int layer_id,
const int param_id);
/// @brief Helper for displaying debug info in Forward.
void ForwardDebugInfo(const int layer_id);
/// @brief Helper for displaying debug info in Backward.
void BackwardDebugInfo(const int layer_id);
/// @brief Helper for displaying debug info in Update.
void UpdateDebugInfo(const int param_id);
/// @brief The network name
string name_;
/// @brief The phase: TRAIN or TEST
Phase phase_;
/// @brief Individual layers in the net
vector<shared_ptr<Layer<Dtype> > > layers_;
vector<string> layer_names_;
map<string, int> layer_names_index_;
vector<bool> layer_need_backward_;
/// @brief the blobs storing intermediate results between the layer.
vector<shared_ptr<Blob<Dtype> > > blobs_;
vector<string> blob_names_;
map<string, int> blob_names_index_;
vector<bool> blob_need_backward_;
/// bottom_vecs stores the vectors containing the input for each layer.
/// They don't actually host the blobs (blobs_ does), so we simply store
/// pointers.
vector<vector<Blob<Dtype>*> > bottom_vecs_;
vector<vector<int> > bottom_id_vecs_;
vector<vector<bool> > bottom_need_backward_;
/// top_vecs stores the vectors containing the output for each layer
vector<vector<Blob<Dtype>*> > top_vecs_;
vector<vector<int> > top_id_vecs_;
/// Vector of weight in the loss (or objective) function of each net blob,
/// indexed by blob_id.
vector<Dtype> blob_loss_weights_;
vector<vector<int> > param_id_vecs_;
vector<int> param_owners_;
vector<string> param_display_names_;
vector<pair<int, int> > param_layer_indices_;
map<string, int> param_names_index_;
/// blob indices for the input and the output of the net
vector<int> net_input_blob_indices_;
vector<int> net_output_blob_indices_;
vector<Blob<Dtype>*> net_input_blobs_;
vector<Blob<Dtype>*> net_output_blobs_;
/// The parameters in the network.
vector<shared_ptr<Blob<Dtype> > > params_;
vector<Blob<Dtype>*> learnable_params_;
/**
* The mapping from params_ -> learnable_params_: we have
* learnable_param_ids_.size() == params_.size(),
* and learnable_params_[learnable_param_ids_[i]] == params_[i].get()
* if and only if params_[i] is an "owner"; otherwise, params_[i] is a sharer
* and learnable_params_[learnable_param_ids_[i]] gives its owner.
*/
vector<int> learnable_param_ids_;
/// the learning rate multipliers for learnable_params_
vector<float> params_lr_;
vector<bool> has_params_lr_;
/// the weight decay multipliers for learnable_params_
vector<float> params_weight_decay_;
vector<bool> has_params_decay_;
/// The bytes of memory used by this net
size_t memory_used_;
/// Whether to compute and display debug info for the net.
bool debug_info_;
// Callbacks
vector<Callback*> before_forward_;
vector<Callback*> after_forward_;
vector<Callback*> before_backward_;
vector<Callback*> after_backward_;
DISABLE_COPY_AND_ASSIGN(Net);
};
} // namespace caffe
#endif // CAFFE_NET_HPP_