forked from FengQuanLi/ResnetGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModelA.py
119 lines (91 loc) · 3.89 KB
/
ModelA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import torch.nn as nn
from Layers import DecoderLayer
from Embed import Embedder, PositionalEncoder
from Sublayers import Norm, 全连接层
import copy
import os.path
import torchvision
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class Decoder(nn.Module):
def __init__(self, vocab_size, d_model, N, heads, dropout, 最大长度=1024):
super().__init__()
self.N = N
self.embed = Embedder(vocab_size, d_model)
self.embedP = Embedder(最大长度, d_model)
# self.pe = PositionalEncoder(d_model, dropout=dropout)
self.layers = get_clones(DecoderLayer(d_model, heads, dropout), N)
self.norm = Norm(d_model)
def forward(self,图向量,操作 ,trg_mask):
position = torch.arange(0, 图向量.size(1), dtype=torch.long,
device=图向量.device)
x = 图向量+self.embedP(position)+self.embed(操作)*0
for i in range(self.N):
x = self.layers[i](x, trg_mask)
return self.norm(x)
class Transformer(nn.Module):
def __init__(self, trg_vocab, d_model, N, heads, dropout,图向量尺寸=6*6*2048):
super().__init__()
self.图转= 全连接层(图向量尺寸,d_model)
self.decoder = Decoder(trg_vocab, d_model, N, heads, dropout)
self.out = 全连接层(d_model, trg_vocab)
def forward(self, 图向量 ,操作, trg_mask):
图向量=self.图转(图向量)
d_output = self.decoder(图向量,操作 , trg_mask)
output = self.out(d_output)
return output
class RESNET_Transformer(nn.Module):
def __init__(self, trg_vocab, d_model, N, heads, dropout,图向量尺寸=1000):
super().__init__()
self.图转= 全连接层(图向量尺寸,d_model)
self.resnet = torchvision.models.resnet18(pretrained=False).eval().requires_grad_(True)
self.decoder = Decoder(trg_vocab, d_model, N, heads, dropout)
self.out = 全连接层(d_model, trg_vocab)
def forward(self, 图向量 , trg_mask):
x=self.resnet(图向量).unsqueeze(0)
图向量=self.图转(x)
d_output = self.decoder(图向量, trg_mask)
output = self.out(d_output)
output=output[:,-1,:]
return output
def get_model(opt, trg_vocab,model_weights='model_weights'):
assert opt.d_model % opt.heads == 0
assert opt.dropout < 1
model = Transformer( trg_vocab, opt.d_model, opt.n_layers, opt.heads, opt.dropout)
if opt.load_weights is not None and os.path.isfile(opt.load_weights+'/'+model_weights):
print("loading pretrained weights...")
model.load_state_dict(torch.load(f'{opt.load_weights}/'+model_weights))
else:
量 = 0
for p in model.parameters():
if p.dim() > 1:
#nn.init.xavier_uniform_(p)
a=0
长 = len(p.shape)
点数 = 1
for j in range(长):
点数 = p.shape[j] * 点数
量 += 点数
print('使用参数:{}百万'.format(量/1000000))
return model
def get_modelB(opt, trg_vocab):
assert opt.d_model % opt.heads == 0
assert opt.dropout < 1
model = RESNET_Transformer(trg_vocab, opt.d_model, opt.n_layers, opt.heads, opt.dropout)
if opt.load_weights is not None and os.path.isfile(opt.load_weights + '/model_weightsB'):
print("loading pretrained weights...")
model.load_state_dict(torch.load(f'{opt.load_weights}/model_weightsB'))
else:
量 = 0
for p in model.parameters():
if p.dim() > 1:
# nn.init.xavier_uniform_(p)
a = 0
长 = len(p.shape)
点数 = 1
for j in range(长):
点数 = p.shape[j] * 点数
量 += 点数
print('使用参数:{}百万'.format(量 / 1000000))
return model