forked from RT-Thread/rt-thread
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslab.c
856 lines (733 loc) · 25.2 KB
/
slab.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
* File : slab.c
*
* Change Logs:
* Date Author Notes
* 2008-07-12 Bernard the first version
* 2010-07-13 Bernard fix RT_ALIGN issue found by kuronca
* 2010-10-23 yi.qiu add module memory allocator
* 2010-12-18 yi.qiu fix zone release bug
*/
/*
* KERN_SLABALLOC.C - Kernel SLAB memory allocator
*
* Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
*
* This code is derived from software contributed to The DragonFly Project
* by Matthew Dillon <[email protected]>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of The DragonFly Project nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific, prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <rthw.h>
#include <rtthread.h>
#ifdef RT_USING_SLAB
#define DBG_TAG "kernel.slab"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
/*
* slab allocator implementation
*
* A slab allocator reserves a ZONE for each chunk size, then lays the
* chunks out in an array within the zone. Allocation and deallocation
* is nearly instantanious, and fragmentation/overhead losses are limited
* to a fixed worst-case amount.
*
* The downside of this slab implementation is in the chunk size
* multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
* In a kernel implementation all this memory will be physical so
* the zone size is adjusted downward on machines with less physical
* memory. The upside is that overhead is bounded... this is the *worst*
* case overhead.
*
* Slab management is done on a per-cpu basis and no locking or mutexes
* are required, only a critical section. When one cpu frees memory
* belonging to another cpu's slab manager an asynchronous IPI message
* will be queued to execute the operation. In addition, both the
* high level slab allocator and the low level zone allocator optimize
* M_ZERO requests, and the slab allocator does not have to pre initialize
* the linked list of chunks.
*
* XXX Balancing is needed between cpus. Balance will be handled through
* asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
*
* XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
* the new zone should be restricted to M_USE_RESERVE requests only.
*
* Alloc Size Chunking Number of zones
* 0-127 8 16
* 128-255 16 8
* 256-511 32 8
* 512-1023 64 8
* 1024-2047 128 8
* 2048-4095 256 8
* 4096-8191 512 8
* 8192-16383 1024 8
* 16384-32767 2048 8
* (if RT_MM_PAGE_SIZE is 4K the maximum zone allocation is 16383)
*
* Allocations >= zone_limit go directly to kmem.
*
* API REQUIREMENTS AND SIDE EFFECTS
*
* To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
* have remained compatible with the following API requirements:
*
* + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
* + all power-of-2 sized allocations are power-of-2 aligned (twe)
* + malloc(0) is allowed and returns non-RT_NULL (ahc driver)
* + ability to allocate arbitrarily large chunks of memory
*/
#define ZALLOC_SLAB_MAGIC 0x51ab51ab
#define ZALLOC_ZONE_LIMIT (16 * 1024) /* max slab-managed alloc */
#define ZALLOC_MIN_ZONE_SIZE (32 * 1024) /* minimum zone size */
#define ZALLOC_MAX_ZONE_SIZE (128 * 1024) /* maximum zone size */
#define ZONE_RELEASE_THRESH 2 /* threshold number of zones */
/*
* Misc constants. Note that allocations that are exact multiples of
* RT_MM_PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
*/
#define MIN_CHUNK_SIZE 8 /* in bytes */
#define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
/*
* Array of descriptors that describe the contents of each page
*/
#define PAGE_TYPE_FREE 0x00
#define PAGE_TYPE_SMALL 0x01
#define PAGE_TYPE_LARGE 0x02
#define btokup(addr) \
(&slab->memusage[((rt_ubase_t)(addr) - slab->heap_start) >> RT_MM_PAGE_BITS])
/**
* Base structure of slab memory object
*/
/*
* The IN-BAND zone header is placed at the beginning of each zone.
*/
struct rt_slab_zone
{
rt_uint32_t z_magic; /**< magic number for sanity check */
rt_uint32_t z_nfree; /**< total free chunks / ualloc space in zone */
rt_uint32_t z_nmax; /**< maximum free chunks */
struct rt_slab_zone *z_next; /**< zoneary[] link if z_nfree non-zero */
rt_uint8_t *z_baseptr; /**< pointer to start of chunk array */
rt_uint32_t z_uindex; /**< current initial allocation index */
rt_uint32_t z_chunksize; /**< chunk size for validation */
rt_uint32_t z_zoneindex; /**< zone index */
struct rt_slab_chunk *z_freechunk; /**< free chunk list */
};
/*
* Chunk structure for free elements
*/
struct rt_slab_chunk
{
struct rt_slab_chunk *c_next;
};
struct rt_slab_memusage
{
rt_uint32_t type: 2 ; /**< page type */
rt_uint32_t size: 30; /**< pages allocated or offset from zone */
};
/*
* slab page allocator
*/
struct rt_slab_page
{
struct rt_slab_page *next; /**< next valid page */
rt_size_t page; /**< number of page */
/* dummy */
char dummy[RT_MM_PAGE_SIZE - (sizeof(struct rt_slab_page *) + sizeof(rt_size_t))];
};
#define RT_SLAB_NZONES 72 /* number of zones */
/*
* slab object
*/
struct rt_slab
{
struct rt_memory parent; /**< inherit from rt_memory */
rt_ubase_t heap_start; /**< memory start address */
rt_ubase_t heap_end; /**< memory end address */
struct rt_slab_memusage *memusage;
struct rt_slab_zone *zone_array[RT_SLAB_NZONES]; /* linked list of zones NFree > 0 */
struct rt_slab_zone *zone_free; /* whole zones that have become free */
rt_uint32_t zone_free_cnt;
rt_uint32_t zone_size;
rt_uint32_t zone_limit;
rt_uint32_t zone_page_cnt;
struct rt_slab_page *page_list;
};
/**
* @brief Alloc memory size by page.
*
* @param m the slab memory management object.
*
* @param npages the number of pages.
*/
void *rt_slab_page_alloc(rt_slab_t m, rt_size_t npages)
{
struct rt_slab_page *b, *n;
struct rt_slab_page **prev;
struct rt_slab *slab = (struct rt_slab *)m;
if (npages == 0)
return RT_NULL;
for (prev = &slab->page_list; (b = *prev) != RT_NULL; prev = &(b->next))
{
if (b->page > npages)
{
/* splite pages */
n = b + npages;
n->next = b->next;
n->page = b->page - npages;
*prev = n;
break;
}
if (b->page == npages)
{
/* this node fit, remove this node */
*prev = b->next;
break;
}
}
return b;
}
/**
* @brief Free memory by page.
*
* @param m the slab memory management object.
*
* @param addr is the head address of first page.
*
* @param npages is the number of pages.
*/
void rt_slab_page_free(rt_slab_t m, void *addr, rt_size_t npages)
{
struct rt_slab_page *b, *n;
struct rt_slab_page **prev;
struct rt_slab *slab = (struct rt_slab *)m;
RT_ASSERT(addr != RT_NULL);
RT_ASSERT((rt_ubase_t)addr % RT_MM_PAGE_SIZE == 0);
RT_ASSERT(npages != 0);
n = (struct rt_slab_page *)addr;
for (prev = &slab->page_list; (b = *prev) != RT_NULL; prev = &(b->next))
{
RT_ASSERT(b->page > 0);
RT_ASSERT(b > n || b + b->page <= n);
if (b + b->page == n)
{
if (b + (b->page += npages) == b->next)
{
b->page += b->next->page;
b->next = b->next->next;
}
return;
}
if (b == n + npages)
{
n->page = b->page + npages;
n->next = b->next;
*prev = n;
return;
}
if (b > n + npages)
break;
}
n->page = npages;
n->next = b;
*prev = n;
}
/*
* Initialize the page allocator
*/
static void rt_slab_page_init(struct rt_slab *slab, void *addr, rt_size_t npages)
{
RT_ASSERT(addr != RT_NULL);
RT_ASSERT(npages != 0);
slab->page_list = RT_NULL;
rt_slab_page_free((rt_slab_t)(&slab->parent), addr, npages);
}
/**
* @brief This function will init slab memory management algorithm
*
* @param name is the name of the slab memory management object.
*
* @param begin_addr the beginning address of system page.
*
* @param size is the size of the memory.
*
* @return Return a pointer to the slab memory object.
*/
rt_slab_t rt_slab_init(const char *name, void *begin_addr, rt_size_t size)
{
rt_uint32_t limsize, npages;
rt_ubase_t start_addr, begin_align, end_align;
struct rt_slab *slab;
slab = (struct rt_slab *)RT_ALIGN((rt_ubase_t)begin_addr, RT_ALIGN_SIZE);
start_addr = (rt_ubase_t)slab + sizeof(*slab);
/* align begin and end addr to page */
begin_align = RT_ALIGN((rt_ubase_t)start_addr, RT_MM_PAGE_SIZE);
end_align = RT_ALIGN_DOWN((rt_ubase_t)begin_addr + size, RT_MM_PAGE_SIZE);
if (begin_align >= end_align)
{
rt_kprintf("slab init errr. wrong address[0x%x - 0x%x]\n",
(rt_ubase_t)begin_addr, (rt_ubase_t)begin_addr + size);
return RT_NULL;
}
limsize = end_align - begin_align;
npages = limsize / RT_MM_PAGE_SIZE;
LOG_D("heap[0x%x - 0x%x], size 0x%x, 0x%x pages",
begin_align, end_align, limsize, npages);
rt_memset(slab, 0, sizeof(*slab));
/* initialize slab memory object */
rt_object_init(&(slab->parent.parent), RT_Object_Class_Memory, name);
slab->parent.algorithm = "slab";
slab->parent.address = begin_align;
slab->parent.total = limsize;
slab->parent.used = 0;
slab->parent.max = 0;
slab->heap_start = begin_align;
slab->heap_end = end_align;
/* init pages */
rt_slab_page_init(slab, (void *)slab->heap_start, npages);
/* calculate zone size */
slab->zone_size = ZALLOC_MIN_ZONE_SIZE;
while (slab->zone_size < ZALLOC_MAX_ZONE_SIZE && (slab->zone_size << 1) < (limsize / 1024))
slab->zone_size <<= 1;
slab->zone_limit = slab->zone_size / 4;
if (slab->zone_limit > ZALLOC_ZONE_LIMIT)
slab->zone_limit = ZALLOC_ZONE_LIMIT;
slab->zone_page_cnt = slab->zone_size / RT_MM_PAGE_SIZE;
LOG_D("zone size 0x%x, zone page count 0x%x",
slab->zone_size, slab->zone_page_cnt);
/* allocate slab->memusage array */
limsize = npages * sizeof(struct rt_slab_memusage);
limsize = RT_ALIGN(limsize, RT_MM_PAGE_SIZE);
slab->memusage = rt_slab_page_alloc((rt_slab_t)(&slab->parent), limsize / RT_MM_PAGE_SIZE);
LOG_D("slab->memusage 0x%x, size 0x%x",
(rt_ubase_t)slab->memusage, limsize);
return &slab->parent;
}
RTM_EXPORT(rt_slab_init);
/**
* @brief This function will remove a slab object from the system.
*
* @param m the slab memory management object.
*
* @return RT_EOK
*/
rt_err_t rt_slab_detach(rt_slab_t m)
{
struct rt_slab *slab = (struct rt_slab *)m;
RT_ASSERT(slab != RT_NULL);
RT_ASSERT(rt_object_get_type(&slab->parent.parent) == RT_Object_Class_Memory);
RT_ASSERT(rt_object_is_systemobject(&slab->parent.parent));
rt_object_detach(&(slab->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_slab_detach);
/*
* Calculate the zone index for the allocation request size and set the
* allocation request size to that particular zone's chunk size.
*/
rt_inline int zoneindex(rt_size_t *bytes)
{
/* unsigned for shift opt */
rt_ubase_t n = (rt_ubase_t)(*bytes);
if (n < 128)
{
*bytes = n = (n + 7) & ~7;
/* 8 byte chunks, 16 zones */
return (n / 8 - 1);
}
if (n < 256)
{
*bytes = n = (n + 15) & ~15;
return (n / 16 + 7);
}
if (n < 8192)
{
if (n < 512)
{
*bytes = n = (n + 31) & ~31;
return (n / 32 + 15);
}
if (n < 1024)
{
*bytes = n = (n + 63) & ~63;
return (n / 64 + 23);
}
if (n < 2048)
{
*bytes = n = (n + 127) & ~127;
return (n / 128 + 31);
}
if (n < 4096)
{
*bytes = n = (n + 255) & ~255;
return (n / 256 + 39);
}
*bytes = n = (n + 511) & ~511;
return (n / 512 + 47);
}
if (n < 16384)
{
*bytes = n = (n + 1023) & ~1023;
return (n / 1024 + 55);
}
rt_kprintf("Unexpected byte count %d", n);
return 0;
}
/**
* @addtogroup MM
*/
/**@{*/
/**
* @brief This function will allocate a block from slab object.
*
* @note the RT_NULL is returned if
* - the nbytes is less than zero.
* - there is no nbytes sized memory valid in system.
*
* @param m the slab memory management object.
*
* @param size is the size of memory to be allocated.
*
* @return the allocated memory.
*/
void *rt_slab_alloc(rt_slab_t m, rt_size_t size)
{
struct rt_slab_zone *z;
rt_int32_t zi;
struct rt_slab_chunk *chunk;
struct rt_slab_memusage *kup;
struct rt_slab *slab = (struct rt_slab *)m;
/* zero size, return RT_NULL */
if (size == 0)
return RT_NULL;
/*
* Handle large allocations directly. There should not be very many of
* these so performance is not a big issue.
*/
if (size >= slab->zone_limit)
{
size = RT_ALIGN(size, RT_MM_PAGE_SIZE);
chunk = rt_slab_page_alloc(m, size >> RT_MM_PAGE_BITS);
if (chunk == RT_NULL)
return RT_NULL;
/* set kup */
kup = btokup(chunk);
kup->type = PAGE_TYPE_LARGE;
kup->size = size >> RT_MM_PAGE_BITS;
LOG_D("alloc a large memory 0x%x, page cnt %d, kup %d",
size,
size >> RT_MM_PAGE_BITS,
((rt_ubase_t)chunk - slab->heap_start) >> RT_MM_PAGE_BITS);
/* mem stat */
slab->parent.used += size;
if (slab->parent.used > slab->parent.max)
slab->parent.max = slab->parent.used;
return chunk;
}
/*
* Attempt to allocate out of an existing zone. First try the free list,
* then allocate out of unallocated space. If we find a good zone move
* it to the head of the list so later allocations find it quickly
* (we might have thousands of zones in the list).
*
* Note: zoneindex() will panic of size is too large.
*/
zi = zoneindex(&size);
RT_ASSERT(zi < RT_SLAB_NZONES);
LOG_D("try to alloc 0x%x on zone: %d", size, zi);
if ((z = slab->zone_array[zi]) != RT_NULL)
{
RT_ASSERT(z->z_nfree > 0);
/* Remove us from the zone_array[] when we become full */
if (--z->z_nfree == 0)
{
slab->zone_array[zi] = z->z_next;
z->z_next = RT_NULL;
}
/*
* No chunks are available but nfree said we had some memory, so
* it must be available in the never-before-used-memory area
* governed by uindex. The consequences are very serious if our zone
* got corrupted so we use an explicit rt_kprintf rather then a KASSERT.
*/
if (z->z_uindex + 1 != z->z_nmax)
{
z->z_uindex = z->z_uindex + 1;
chunk = (struct rt_slab_chunk *)(z->z_baseptr + z->z_uindex * size);
}
else
{
/* find on free chunk list */
chunk = z->z_freechunk;
/* remove this chunk from list */
z->z_freechunk = z->z_freechunk->c_next;
}
/* mem stats */
slab->parent.used += z->z_chunksize;
if (slab->parent.used > slab->parent.max)
slab->parent.max = slab->parent.used;
return chunk;
}
/*
* If all zones are exhausted we need to allocate a new zone for this
* index.
*
* At least one subsystem, the tty code (see CROUND) expects power-of-2
* allocations to be power-of-2 aligned. We maintain compatibility by
* adjusting the base offset below.
*/
{
rt_uint32_t off;
if ((z = slab->zone_free) != RT_NULL)
{
/* remove zone from free zone list */
slab->zone_free = z->z_next;
-- slab->zone_free_cnt;
}
else
{
/* allocate a zone from page */
z = rt_slab_page_alloc(m, slab->zone_size / RT_MM_PAGE_SIZE);
if (z == RT_NULL)
{
return RT_NULL;
}
LOG_D("alloc a new zone: 0x%x",
(rt_ubase_t)z);
/* set message usage */
for (off = 0, kup = btokup(z); off < slab->zone_page_cnt; off ++)
{
kup->type = PAGE_TYPE_SMALL;
kup->size = off;
kup ++;
}
}
/* clear to zero */
rt_memset(z, 0, sizeof(struct rt_slab_zone));
/* offset of slab zone struct in zone */
off = sizeof(struct rt_slab_zone);
/*
* Guarentee power-of-2 alignment for power-of-2-sized chunks.
* Otherwise just 8-byte align the data.
*/
if ((size | (size - 1)) + 1 == (size << 1))
off = (off + size - 1) & ~(size - 1);
else
off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
z->z_magic = ZALLOC_SLAB_MAGIC;
z->z_zoneindex = zi;
z->z_nmax = (slab->zone_size - off) / size;
z->z_nfree = z->z_nmax - 1;
z->z_baseptr = (rt_uint8_t *)z + off;
z->z_uindex = 0;
z->z_chunksize = size;
chunk = (struct rt_slab_chunk *)(z->z_baseptr + z->z_uindex * size);
/* link to zone array */
z->z_next = slab->zone_array[zi];
slab->zone_array[zi] = z;
/* mem stats */
slab->parent.used += z->z_chunksize;
if (slab->parent.used > slab->parent.max)
slab->parent.max = slab->parent.used;
}
return chunk;
}
RTM_EXPORT(rt_slab_alloc);
/**
* @brief This function will change the size of previously allocated memory block.
*
* @param m the slab memory management object.
*
* @param ptr is the previously allocated memory block.
*
* @param size is the new size of memory block.
*
* @return the allocated memory.
*/
void *rt_slab_realloc(rt_slab_t m, void *ptr, rt_size_t size)
{
void *nptr;
struct rt_slab_zone *z;
struct rt_slab_memusage *kup;
struct rt_slab *slab = (struct rt_slab *)m;
if (ptr == RT_NULL)
return rt_slab_alloc(m, size);
if (size == 0)
{
rt_slab_free(m, ptr);
return RT_NULL;
}
/*
* Get the original allocation's zone. If the new request winds up
* using the same chunk size we do not have to do anything.
*/
kup = btokup((rt_ubase_t)ptr & ~RT_MM_PAGE_MASK);
if (kup->type == PAGE_TYPE_LARGE)
{
rt_size_t osize;
osize = kup->size << RT_MM_PAGE_BITS;
if ((nptr = rt_slab_alloc(m, size)) == RT_NULL)
return RT_NULL;
rt_memcpy(nptr, ptr, size > osize ? osize : size);
rt_slab_free(m, ptr);
return nptr;
}
else if (kup->type == PAGE_TYPE_SMALL)
{
z = (struct rt_slab_zone *)(((rt_ubase_t)ptr & ~RT_MM_PAGE_MASK) -
kup->size * RT_MM_PAGE_SIZE);
RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
zoneindex(&size);
if (z->z_chunksize == size)
return (ptr); /* same chunk */
/*
* Allocate memory for the new request size. Note that zoneindex has
* already adjusted the request size to the appropriate chunk size, which
* should optimize our bcopy(). Then copy and return the new pointer.
*/
if ((nptr = rt_slab_alloc(m, size)) == RT_NULL)
return RT_NULL;
rt_memcpy(nptr, ptr, size > z->z_chunksize ? z->z_chunksize : size);
rt_slab_free(m, ptr);
return nptr;
}
return RT_NULL;
}
RTM_EXPORT(rt_slab_realloc);
/**
* @brief This function will release the previous allocated memory block by rt_slab_alloc.
*
* @note The released memory block is taken back to system heap.
*
* @param m the slab memory management object.
* @param ptr is the address of memory which will be released
*/
void rt_slab_free(rt_slab_t m, void *ptr)
{
struct rt_slab_zone *z;
struct rt_slab_chunk *chunk;
struct rt_slab_memusage *kup;
struct rt_slab *slab = (struct rt_slab *)m;
/* free a RT_NULL pointer */
if (ptr == RT_NULL)
return ;
/* get memory usage */
#if (DBG_LVL == DBG_LOG)
{
rt_ubase_t addr = ((rt_ubase_t)ptr & ~RT_MM_PAGE_MASK);
LOG_D("free a memory 0x%x and align to 0x%x, kup index %d",
(rt_ubase_t)ptr,
(rt_ubase_t)addr,
((rt_ubase_t)(addr) - slab->heap_start) >> RT_MM_PAGE_BITS);
}
#endif /* DBG_LVL == DBG_LOG */
kup = btokup((rt_ubase_t)ptr & ~RT_MM_PAGE_MASK);
/* release large allocation */
if (kup->type == PAGE_TYPE_LARGE)
{
rt_ubase_t size;
/* clear page counter */
size = kup->size;
kup->size = 0;
/* mem stats */
slab->parent.used -= size * RT_MM_PAGE_SIZE;
LOG_D("free large memory block 0x%x, page count %d",
(rt_ubase_t)ptr, size);
/* free this page */
rt_slab_page_free(m, ptr, size);
return;
}
/* zone case. get out zone. */
z = (struct rt_slab_zone *)(((rt_ubase_t)ptr & ~RT_MM_PAGE_MASK) -
kup->size * RT_MM_PAGE_SIZE);
RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
chunk = (struct rt_slab_chunk *)ptr;
chunk->c_next = z->z_freechunk;
z->z_freechunk = chunk;
/* mem stats */
slab->parent.used -= z->z_chunksize;
/*
* Bump the number of free chunks. If it becomes non-zero the zone
* must be added back onto the appropriate list.
*/
if (z->z_nfree++ == 0)
{
z->z_next = slab->zone_array[z->z_zoneindex];
slab->zone_array[z->z_zoneindex] = z;
}
/*
* If the zone becomes totally free, and there are other zones we
* can allocate from, move this zone to the FreeZones list. Since
* this code can be called from an IPI callback, do *NOT* try to mess
* with kernel_map here. Hysteresis will be performed at malloc() time.
*/
if (z->z_nfree == z->z_nmax &&
(z->z_next || slab->zone_array[z->z_zoneindex] != z))
{
struct rt_slab_zone **pz;
LOG_D("free zone 0x%x",
(rt_ubase_t)z, z->z_zoneindex);
/* remove zone from zone array list */
for (pz = &slab->zone_array[z->z_zoneindex]; z != *pz; pz = &(*pz)->z_next)
;
*pz = z->z_next;
/* reset zone */
z->z_magic = RT_UINT32_MAX;
/* insert to free zone list */
z->z_next = slab->zone_free;
slab->zone_free = z;
++ slab->zone_free_cnt;
/* release zone to page allocator */
if (slab->zone_free_cnt > ZONE_RELEASE_THRESH)
{
register rt_uint32_t i;
z = slab->zone_free;
slab->zone_free = z->z_next;
-- slab->zone_free_cnt;
/* set message usage */
for (i = 0, kup = btokup(z); i < slab->zone_page_cnt; i ++)
{
kup->type = PAGE_TYPE_FREE;
kup->size = 0;
kup ++;
}
/* release pages */
rt_slab_page_free(m, z, slab->zone_size / RT_MM_PAGE_SIZE);
return;
}
}
}
RTM_EXPORT(rt_slab_free);
#endif /* RT_USING_SLAB */