-
Notifications
You must be signed in to change notification settings - Fork 6
/
TrainC2.py
170 lines (129 loc) · 6.16 KB
/
TrainC2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import dataset
import tensorflow as tf
import numpy as np
from numpy.random import seed
import os
os.environ['CUDA_VISIBLE_DEVICES']='0'
seed(10)
from tensorflow import set_random_seed
set_random_seed(20)
batch_size = 128
classes = ['r1', 'r2']
num_classes = len(classes)
validation_size = 0.2
img_size = 48
num_channels = 2
train_path = '/media/data2/mhy/data/0911'
# session = tf.Session()
data = dataset.read_train_sets(train_path, img_size, classes, validation_size)
print("Complete reading input data.Will Now print a snippet of it")
# print("Number of files in Training-set:\t\t{}".format(len(data.train.labels)))
session = tf.Session()
x = tf.placeholder(tf.float32, shape=[None, img_size, img_size, num_channels], name='x')
y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')
y_true_cls = tf.argmax(y_true, axis=1)
filter_size_conv1 = 5
num_filters_conv1 = 64
filter_size_conv2 = 5
num_filters_conv2 = 128
filter_size_conv3 = 3
num_filters_conv3 = 256
# 全连接层的输出
fc_layer_size = 1024
def create_weights(shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.05))
def create_biases(size):
return tf.Variable(tf.constant(0.05, shape=[size]))
def create_convolution_layer(input,
num_input_channels,
conv_filter_size,
num_filters,
use_maxpool=True):
weights = create_weights(shape=[conv_filter_size, conv_filter_size, num_input_channels, num_filters])
biases = create_biases(num_filters)
layer = tf.nn.conv2d(input=input, filter=weights, strides=[1, 1, 1, 1], padding='SAME')
layer += biases
layer = tf.nn.relu(layer)
if use_maxpool:
layer = tf.nn.max_pool(value=layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
return layer
def create_flatten_layer(layer):
layer_shape = layer.get_shape()
num_features = layer_shape[1:4].num_elements()
layer = tf.reshape(layer, [-1, num_features])
return layer
def create_fc_layer(input,
num_inputs,
num_outputs,
use_relu=True):
weights = create_weights(shape=[num_inputs, num_outputs])
biases = create_biases(num_outputs)
layer = tf.matmul(input, weights) + biases
layer = tf.nn.dropout(layer, keep_prob=0.9)
if use_relu:
layer = tf.nn.relu(layer)
return layer
layer_conv1 = create_convolution_layer(input=x,
num_input_channels=num_channels,
conv_filter_size=filter_size_conv1,
num_filters=num_filters_conv1,
use_maxpool=False)
layer_conv2 = create_convolution_layer(input=layer_conv1,
num_input_channels=num_filters_conv1,
conv_filter_size=filter_size_conv2,
num_filters=num_filters_conv2)
layer_conv3 = create_convolution_layer(input=layer_conv2,
num_input_channels=num_filters_conv2,
conv_filter_size=filter_size_conv3,
num_filters=num_filters_conv3,
use_maxpool=False)
layer_flat = create_flatten_layer(layer_conv3)
layer_fc1 = create_fc_layer(input=layer_flat,
num_inputs=layer_flat.get_shape()[1:4].num_elements(),
num_outputs=fc_layer_size,
use_relu=True)
layer_fc2 = create_fc_layer(input=layer_fc1,
num_inputs=fc_layer_size,
num_outputs=num_classes,
use_relu=False)
y_pred = tf.nn.softmax(layer_fc2, name='y_pred')
y_pred_cls = tf.argmax(y_pred, dimension=1)
session.run(tf.global_variables_initializer())
reg=tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(1e-4),tf.trainable_variables())
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2, labels=y_true)+reg
cost = tf.reduce_mean(cross_entropy)
global_step=tf.Variable(0,trainable=False)
initial_learning_rate=1e-4
learning_rate=tf.train.exponential_decay(initial_learning_rate,
global_step=global_step,
decay_steps=1000,
decay_rate=0.2)
# optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
session.run(tf.global_variables_initializer())
def show_progress(epoch, feed_dict_train, feed_dict_validate, loss, val_loss, i):
acc = session.run(accuracy, feed_dict=feed_dict_train)
val_acc = session.run(accuracy, feed_dict=feed_dict_validate)
print("epoch:", str(epoch + 1) + ",i:", str(i) +
",acc:", str(acc) + ",val_acc:", str(val_acc) + ",loss:", str(loss) + ",val_loss:", str(val_loss))
total_iterations = 0
saver = tf.train.Saver()
def train(num_iteration):
global total_iterations
for i in range(total_iterations, total_iterations + num_iteration):
x_batch, y_true_batch, _, cls_batch = data.train.next_batch(batch_size)
x_valid_batch, y_valid_batch, _, valid_cls_batch = data.valid.next_batch(batch_size)
feed_dict_tr = {x: x_batch, y_true: y_true_batch}
feed_dict_val = {x: x_valid_batch, y_true: y_valid_batch}
session.run(optimizer, feed_dict=feed_dict_tr)
examples = data.train.num_examples()
if i % 1000 == 0:
loss = session.run(cost, feed_dict=feed_dict_tr)
val_loss = session.run(cost, feed_dict=feed_dict_val)
epoch = int(i / int(examples / batch_size))
show_progress(epoch, feed_dict_tr, feed_dict_val, loss, val_loss, i)
saver.save(session, '/media/data2/mhy/data/0912/model0/SimpleFusion.ckpt', global_step=i)
total_iterations += num_iteration
train(num_iteration=500001)