-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net.py
124 lines (94 loc) · 4.16 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from lib.config import cfg, args
from lib.networks import make_network
from lib.train import make_trainer, make_optimizer, make_lr_scheduler, make_recorder, set_lr_scheduler
from lib.datasets import make_data_loader
from lib.utils.net_utils import load_model, save_model, load_network
from lib.evaluators import make_evaluator
from tqdm import tqdm, trange
import os
import torch.multiprocessing
import time
import torch
import numpy as np
import random
import wandb
def set_seed(seed=42):
torch.backends.cudnn.deterministic = True
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def train(cfg, network):
time_start = time.time()
if cfg.train.dataset[:4] != 'City':
torch.multiprocessing.set_sharing_strategy('file_system')
trainer = make_trainer(cfg, network)
optimizer = make_optimizer(cfg, network)
scheduler = make_lr_scheduler(cfg, optimizer)
recorder = make_recorder(cfg)
evaluator = make_evaluator(cfg)
begin_epoch = load_model(network, optimizer, scheduler, recorder, cfg.model_dir, resume=cfg.resume)
if cfg.train.warmup and not cfg.train.cosine:
set_lr_scheduler(cfg, scheduler)
train_loader = make_data_loader(cfg, is_train=True, max_iter=cfg.ep_iter)
val_loader = make_data_loader(cfg, is_train=False)
trainer.set_fixed_batch(make_data_loader(cfg, is_train=False))
wandb.watch(network, log="all",log_freq=1)
for epoch in trange(begin_epoch, cfg.train.epoch):
recorder.epoch = epoch
trainer.train(epoch, train_loader, optimizer, recorder, scheduler)
# Multistep and warmup step schedulers need to be updated every epoch not batch iteration
if cfg.train.warmup and not cfg.train.cosine:
scheduler.step()
# Preform cross validation of the model periodically
if epoch % cfg.eval_ep == 0:
trainer.val(epoch, val_loader, evaluator, recorder, scheduler, optimizer)
# Save and upload best model to wandb for reference
best_epoch = trainer.model_ckpt_data['epoch'] + 1
path_to_ckpt = os.path.join(cfg.model_dir, '{}.pth'.format(best_epoch))
torch.save(trainer.model_ckpt_data, path_to_ckpt)
if cfg.train.save_to_wandb:
wandb.save(path_to_ckpt)
print(f"{'='*100}\nFinal Cross Validation Results\n{'='*100}")
# load_model(network, optimizer, scheduler, recorder, cfg.model_dir, resume=cfg.resume)
trainer.network.load_state_dict(torch.load(path_to_ckpt)['net'])
trainer.val(best_epoch, val_loader, evaluator, recorder, scheduler, optimizer)
print(f"[Timing] Training for {cfg.train.epoch - begin_epoch} epoch:")
print(f"{time.time() - time_start} seconds \n{(time.time() - time_start)/3600} hours")
print()
return network
def test(cfg, network):
trainer = make_trainer(cfg, network)
val_loader = make_data_loader(cfg, is_train=False)
evaluator = make_evaluator(cfg)
epoch = load_network(network, cfg.model_dir, resume=cfg.resume, epoch=cfg.test.epoch)
trainer.val(epoch, val_loader, evaluator)
def main(cfg=cfg):
with wandb.init(config=cfg):
if cfg.train.wandb_sweep:
cfg.train.t_0 = wandb.config.t_0
cfg.train.t_mult = wandb.config.t_mult
cfg.train.lr = wandb.config.lr
network = make_network(cfg)
if args.test:
test(cfg, network)
else:
train(cfg, network)
wandb.finish()
if cfg.train.wandb_sweep:
if cfg.train.deterministic:
set_seed()
sweep_config = {'method': 'bayes'} #'random'}
# metric = {'name': '/Eval/eval_result.kpt_error','goal': 'minimize'}
metric = {'name': '/Eval/eval_result.z_err_mm','goal': 'minimize'}
parameters = {'lr' : {'max': 0.01, 'min': 1e-4},
't_0': {'max': 40, 'min': 10},
't_mult': {'max': 10, 'min': 1}}
sweep_config['metric'] = metric
sweep_config['parameters'] = parameters
sweep_id = wandb.sweep(sweep_config, entity="cobot_illfit", project="pvnet_cobot")
wandb.agent(sweep_id, main)
if __name__ == "__main__":
if cfg.train.deterministic:
set_seed()
main()