forked from TropComplique/FaceBoxes-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
63 lines (47 loc) · 2.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import tensorflow as tf
import json
import os
from model import model_fn
from src.input_pipeline import Pipeline
tf.logging.set_verbosity('INFO')
CONFIG = 'config.json'
GPU_TO_USE = '0'
params = json.load(open(CONFIG))
model_params = params['model_params']
input_params = params['input_pipeline_params']
def get_input_fn(is_training=True):
image_size = input_params['image_size'] if is_training else None
# (for evaluation i use images of different sizes)
dataset_path = input_params['train_dataset'] if is_training else input_params['val_dataset']
batch_size = input_params['batch_size'] if is_training else 1
# for evaluation it's important to set batch_size to 1
filenames = os.listdir(dataset_path)
filenames = [n for n in filenames if n.endswith('.tfrecords')]
filenames = [os.path.join(dataset_path, n) for n in sorted(filenames)]
def input_fn():
with tf.device('/cpu:0'), tf.name_scope('input_pipeline'):
pipeline = Pipeline(
filenames,
batch_size=batch_size, image_size=image_size,
repeat=is_training, shuffle=is_training,
augmentation=is_training
)
features, labels = pipeline.get_batch()
return features, labels
return input_fn
config = tf.ConfigProto()
config.gpu_options.visible_device_list = GPU_TO_USE
run_config = tf.estimator.RunConfig()
run_config = run_config.replace(
model_dir=model_params['model_dir'],
session_config=config,
save_summary_steps=200,
save_checkpoints_secs=600,
log_step_count_steps=100
)
train_input_fn = get_input_fn(is_training=True)
val_input_fn = get_input_fn(is_training=False)
estimator = tf.estimator.Estimator(model_fn, params=model_params, config=run_config)
train_spec = tf.estimator.TrainSpec(train_input_fn, max_steps=input_params['num_steps'])
eval_spec = tf.estimator.EvalSpec(val_input_fn, steps=None, start_delay_secs=1800, throttle_secs=1800)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)