-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadadelta.py
243 lines (215 loc) · 9.68 KB
/
adadelta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from paddle import _C_ops
from ..fluid import framework
from ..fluid.dygraph import no_grad
from ..framework import in_dygraph_mode
from .optimizer import Optimizer
__all__ = []
class Adadelta(Optimizer):
r"""
**Notes: This API does not support sparse parameter optimization.**
Adadelta Optimizer. Please refer to this for details:
`ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.
The update is done as follows:
.. math::
E(g_t^2) &= \rho * E(g_{t-1}^2) + (1-\rho) * g^2
learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \epsilon ) / ( E(g_t^2) + \epsilon ) }
E(dx_t^2) &= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2
Args:
learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
epsilon (float): a small float number for numeric stability. Default 1.0e-6.
rho (float): a floating point value indicating the decay rate. Default 0.95.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. And you can specify different options for \
different parameter groups such as the learning rate, weight decay, etc, \
then the parameters are list of dict. Note that the learning_rate in paramter groups \
represents the scale of base learning_rate. \
The default value is None in static graph mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to
:ref:`api_guide_Name` .
Examples:
.. code-block:: python
import paddle
inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
linear = paddle.nn.Linear(10, 10)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
adadelta = paddle.optimizer.Adadelta(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
back = out.backward()
adadelta.step()
adadelta.clear_grad()
#Note that the learning_rate of linear_2 is 0.01.
linear_1 = paddle.nn.Linear(10, 10)
linear_2 = paddle.nn.Linear(10, 10)
inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
out = linear_1(inp)
out = linear_2(out)
loss = paddle.mean(out)
adadelta = paddle.optimizer.Adadelta(
learning_rate=0.1,
parameters=[{
'params': linear_1.parameters()
}, {
'params': linear_2.parameters(),
'weight_decay': 0.001,
'learning_rate': 0.1,
}],
weight_decay=0.01)
out.backward()
adadelta.step()
adadelta.clear_grad()
"""
_avg_squared_grad_acc_str = "_avg_squared_grad"
_avg_squared_update_acc_str = "_avg_squared_update"
def __init__(
self,
learning_rate=0.001,
epsilon=1.0e-6,
rho=0.95,
parameters=None,
weight_decay=None,
grad_clip=None,
name=None,
):
if learning_rate is None:
raise ValueError("learning_rate is not set.")
if epsilon is None:
raise ValueError("epsilon is not set.")
if rho is None:
raise ValueError("rho is not set.")
super().__init__(
learning_rate=learning_rate,
parameters=parameters,
weight_decay=weight_decay,
grad_clip=grad_clip,
name=name,
)
self._multi_precision = False
self._master_weights = {}
self.type = "adadelta"
self._epsilon = epsilon
self._rho = rho
self._default_dict = {
'epsilon': epsilon,
'rho': rho,
}
def _create_accumulators(self, block, parameters):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
if isinstance(parameters, dict):
parameters = parameters.get('params')
for p in parameters:
if p.name in self._already_create_accumulater:
continue
if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
master_p = self._create_master_weight(p)
self._add_accumulator(self._avg_squared_grad_acc_str, master_p)
self._add_accumulator(
self._avg_squared_update_acc_str, master_p
)
self._already_create_accumulater.add(p.name)
continue
if (
self._is_dtype_fp16_or_bf16(p.dtype)
and not self._multi_precision
):
warnings.warn(
"Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence."
"Consider using multi_precision=True option of the Lars optimizer."
)
self._add_accumulator(self._avg_squared_grad_acc_str, p)
self._add_accumulator(self._avg_squared_update_acc_str, p)
self._already_create_accumulater.add(p.name)
def _append_optimize_op(self, block, param_and_grad):
if isinstance(param_and_grad, dict):
param_and_grad = self._update_param_group(param_and_grad)
avg_squared_grad_acc = self._get_accumulator_master(
self._avg_squared_grad_acc_str, param_and_grad[0]
)
avg_squared_update_acc = self._get_accumulator_master(
self._avg_squared_update_acc_str, param_and_grad[0]
)
find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
param_and_grad[0].dtype
)
master_weight = (
self._master_weights[param_and_grad[0].name]
if find_master
else None
)
if in_dygraph_mode():
with no_grad():
_C_ops.adadelta_(
param_and_grad[0],
param_and_grad[1],
avg_squared_grad_acc,
avg_squared_update_acc,
master_weight,
self._rho,
self._epsilon,
find_master,
)
return None
else:
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
# Create the adadelta optimizer op
inputs = {
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"AvgSquaredGrad": avg_squared_grad_acc,
"AvgSquaredUpdate": avg_squared_update_acc,
}
outputs = {
"ParamOut": param_and_grad[0],
"AvgSquaredGradOut": avg_squared_grad_acc,
"AvgSquaredUpdateOut": avg_squared_update_acc,
}
if find_master:
inputs["MasterParam"] = master_weight
outputs["MasterParamOut"] = master_weight
adadelta_op = block.append_op(
type=self.type,
inputs=inputs,
outputs=outputs,
attrs={
"epsilon": self._epsilon,
"rho": self._rho,
"multi_precision": find_master,
},
stop_gradient=True,
)
return adadelta_op
def _update_param_group(self, parameters):
self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
self._rho = parameters.get('rho', self._default_dict['rho'])
parameters = parameters.get('params')
return parameters