-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadamw.py
637 lines (569 loc) · 24.6 KB
/
adamw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from collections import defaultdict
from collections.abc import Callable
import paddle
from .. import _C_ops
from ..fluid import core, framework
from ..fluid.dygraph import base as imperative_base
from ..fluid.framework import Parameter, Variable
from ..nn.clip import GradientClipBase
from .lr import LRScheduler
from .optimizer import Optimizer
__all__ = []
class AdamW(Optimizer):
r"""
The AdamW optimizer is implemented based on the AdamW Optimization
in paper `DECOUPLED WEIGHT DECAY REGULARIZATION <https://arxiv.org/pdf/1711.05101.pdf>`_.
it can resolves the problem of L2 regularization failure in the Adam optimizer.
.. math::
t & = t + 1
moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
moemnt\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
learning\_rate & = learning\_rate *
\frac{\sqrt{1 - {\beta}_2^t}}{1 - {beta}_1^t}
param\_out & = param - learning\_rate * (\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)
Args:
learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
It can be a float value or a LRScheduler. The default value is 0.001.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``.
This parameter is required in dygraph mode. And you can specify different options for
different parameter groups such as the learning rate, weight decay, etc,
then the parameters are list of dict. Note that the learning_rate in paramter groups
represents the scale of base learning_rate.
The default value is None in static graph mode, at this time all parameters will be updated.
beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
It should be a float number or a Tensor with shape [1] and data type as float32.
The default value is 0.9.
beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
It should be a float number or a Tensor with shape [1] and data type as float32.
The default value is 0.999.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-08.
weight_decay (float|Tensor, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
lr_ratio (function|None, optional): If it is not None,
the learning rate will be updated with layerwise learning rate ratio.
Otherwise, the learning rate is the original.
Default: None.
apply_decay_param_fun (function|None, optional): If it is not None,
only tensors that makes apply_decay_param_fun(Tensor.name)==True
will be updated with weight decay. It only works when we want to specify tensors.
Default: None.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
The accumulators are updated at every step. Every element of the two moving-average
is updated in both dense mode and sparse mode. If the size of parameter is very large,
then the update may be very slow. The lazy mode only update the element that has
gradient in current mini-batch, so it will be much more faster. But this mode has
different semantics with the original Adam algorithm and may lead to different result.
The default value is False.
multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
**Notes**:
**Currently, AdamW doesn't support sparse parameter optimization.**
Examples:
.. code-block:: python
import paddle
linear = paddle.nn.Linear(10, 10)
inp = paddle.rand([10,10], dtype="float32")
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
opt = paddle.optimizer.AdamW(learning_rate=0.1,
parameters=linear.parameters(),
beta1=beta1,
beta2=beta2,
weight_decay=0.01)
out.backward()
opt.step()
opt.clear_grad()
#Note that the learning_rate of linear_2 is 0.01.
linear_1 = paddle.nn.Linear(10, 10)
linear_2 = paddle.nn.Linear(10, 10)
inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
out = linear_1(inp)
out = linear_2(out)
loss = paddle.mean(out)
opt = paddle.optimizer.AdamW(
learning_rate=0.1,
parameters=[{
'params': linear_1.parameters()
}, {
'params': linear_2.parameters(),
'weight_decay': 0.001,
'learning_rate': 0.1,
'beta1': 0.8
}],
weight_decay=0.01,
beta1=0.9)
out.backward()
opt.step()
opt.clear_grad()
"""
_moment1_acc_str = "moment1"
_moment2_acc_str = "moment2"
_beta1_pow_acc_str = "beta1_pow_acc"
_beta2_pow_acc_str = "beta2_pow_acc"
def __init__(
self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
parameters=None,
weight_decay=0.01,
lr_ratio=None,
apply_decay_param_fun=None,
grad_clip=None,
lazy_mode=False,
multi_precision=False,
name=None,
):
assert learning_rate is not None
assert beta1 is not None
assert beta2 is not None
assert epsilon is not None
if not 0 <= beta1 < 1:
raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
if not 0 <= beta2 < 1:
raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
if not 0 <= epsilon:
raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
if not isinstance(weight_decay, float) and not isinstance(
weight_decay, framework.Variable
):
raise TypeError("weight_decay should be float or Tensor.")
if lr_ratio is not None:
assert isinstance(lr_ratio, Callable)
if (
not core.is_compiled_with_cuda()
and not core.is_compiled_with_xpu()
):
raise NotImplementedError(
"'lr_ratio' is unimplemented in CPU, and NPU"
)
if parameters is not None:
# paddle.Tensor is also iterable, so here we don't check whether
# the input is iterable, if the input is paddle.Tensor, the
# list(paddle.Tensor) will be a error value
if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
raise TypeError(
"`parameters` argument given to the optimizer should be "
"an iterable of paddle Tensors, but got argument type is `{}`.".format(
type(parameters)
)
)
if isinstance(parameters, dict):
raise TypeError(
"`parameters` argument should not get dict type, "
"if parameter groups is needed, please set `parameters`"
" as list of dict"
)
self._parameter_list = list(parameters)
else:
self._parameter_list = None
self._name = name
if framework._non_static_mode():
if self._parameter_list is None:
raise AttributeError(
"parameters argument given to the Optimizer should not be None in dygraph mode."
)
if not isinstance(learning_rate, (float, LRScheduler)):
raise TypeError(
"learning rate should be float or LRScheduler, got %s here"
% type(learning_rate)
)
if grad_clip is not None:
if not isinstance(grad_clip, GradientClipBase):
raise TypeError(
"'grad_clip' should be an instance of GradientClipBase's derived class"
)
self._dtype = None
# Infer the dtype form parameter
if self._parameter_list:
if isinstance(self._parameter_list[0], dict):
for param_group in self._parameter_list:
assert (
'params' in param_group
), 'params should be set in parameters if parameter groups are optimized in different options'
self._dtype = self._parameter_list[0]['params'][0].dtype
else:
self._dtype = self._parameter_list[0].dtype
# each program should have a independent learning rate
# program -> tensor(learning_rate)
self._learning_rate_map = {}
# Dictionary of accumulators. Some optimizer subclasses need to
# allocate and manage extra tensors associated with the parameters
# to train. These tensors are called accumulators.
# {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
self._accumulators = defaultdict(lambda: {})
self.helper = None
self._opti_name_list = []
self._accumulators_holder = {}
self._param_device_map = {}
self.clear_gradients = self.clear_grad
self.type = "adamw"
self._learning_rate = learning_rate
self._params_name = set()
self._apply_decay_param_fun = apply_decay_param_fun
self._weight_decay = weight_decay
self._grad_clip = grad_clip
self._lr_ratio = lr_ratio
self._beta1 = beta1
self._beta2 = beta2
self._epsilon = epsilon
self._lazy_mode = lazy_mode
self._multi_precision = multi_precision
self._master_weights = {}
self._default_dict = {
'weight_decay': weight_decay,
'beta1': beta1,
'beta2': beta2,
'epsilon': epsilon,
'lazy_mode': lazy_mode,
'grad_clip': grad_clip,
}
self._param_groups = []
if self._parameter_list and isinstance(self._parameter_list[0], dict):
for param_group in self._parameter_list:
self._add_param_group(param_group.copy())
else:
self._param_groups = self._parameter_list
self._use_multi_tensor = None
self.regularization = None
self._auxiliary_vars = {}
self._already_create_accumulater = set()
def _set_auxiliary_var(self, key, val):
self._auxiliary_vars[key] = val
def _get_auxiliary_var(self, key):
if key in self._auxiliary_vars:
return self._auxiliary_vars[key]
else:
return None
def _add_param_group(self, param_group):
"""
Add a param group to parameter_list.
Args:
param_group (dict): The group of Tensors to be optimzed with
different optimization options.
"""
params = param_group['params']
if isinstance(params, Parameter):
param_group['params'] = [params]
elif isinstance(params, set):
raise TypeError(
"optimizer parameters should be in ordered collections,"
"but received set, please use list instead."
)
else:
param_group['params'] = list(params)
# Update optimization options for each groups
for k, v in self._default_dict.items():
param_group.setdefault(k, v)
param_set = set()
for group in self._param_groups:
param_set.update(set(group['params']))
if not param_set.isdisjoint(set(param_group['params'])):
raise ValueError(
"some parameters appear in more than one parameter group"
)
for param in param_group['params']:
param.optimize_attr['learning_rate'] = param_group.get(
'learning_rate', 1.0
)
self._param_groups.append(param_group)
def _add_moments_pows(self, p):
acc_dtype = p.dtype
if self._is_dtype_fp16_or_bf16(acc_dtype):
acc_dtype = core.VarDesc.VarType.FP32
self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
self._add_accumulator(
name=self._beta1_pow_acc_str,
param=p,
dtype=acc_dtype,
fill_value=0.9
if isinstance(self._beta1, Variable)
else self._beta1,
shape=[1],
type=core.VarDesc.VarType.LOD_TENSOR,
device='cpu',
)
self._add_accumulator(
name=self._beta2_pow_acc_str,
param=p,
dtype=acc_dtype,
fill_value=0.999
if isinstance(self._beta2, Variable)
else self._beta2,
shape=[1],
type=core.VarDesc.VarType.LOD_TENSOR,
device='cpu',
)
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
if isinstance(parameters, dict):
parameters = self._update_param_group(parameters)
# Create accumulator tensors for first and second moments
for p in parameters:
if p.name in self._already_create_accumulater:
continue
if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
master_p = self._create_master_weight(p)
self._add_moments_pows(master_p)
self._already_create_accumulater.add(p.name)
continue
if (
self._is_dtype_fp16_or_bf16(p.dtype)
and not self._multi_precision
):
warnings.warn(
"Accumulating with FP16 or BF16 in optimizer can lead to poor accuracy or slow convergence."
"Consider using multi_precision=True option of the Adam optimizer."
)
self._add_moments_pows(p)
self._already_create_accumulater.add(p.name)
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
if isinstance(param_and_grad, dict):
param_and_grad = self._update_param_group(param_and_grad)
param, grad = param_and_grad
# Whether we should do weight decay for the parameter.
with_decay = True
if (
self._apply_decay_param_fun is not None
and not self._apply_decay_param_fun(param.name)
):
with_decay = False
moment1 = self._get_accumulator_master(
self._moment1_acc_str, param_and_grad[0]
)
moment2 = self._get_accumulator_master(
self._moment2_acc_str, param_and_grad[0]
)
beta1_pow_acc = self._get_accumulator_master(
self._beta1_pow_acc_str, param_and_grad[0]
)
beta2_pow_acc = self._get_accumulator_master(
self._beta2_pow_acc_str, param_and_grad[0]
)
find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
param_and_grad[0].dtype
)
master_weight = (
self._master_weights[param_and_grad[0].name]
if find_master
else None
)
lr = self._create_param_lr(param_and_grad)
# create the adamw optimize op
if framework.in_dygraph_mode():
lr_ratio_ = (
1.0
if self._lr_ratio is None
else self._lr_ratio(param_and_grad[0])
)
_beta1 = (
self._beta1
if not isinstance(self._beta1, Variable)
else self._beta1.item(0)
)
_beta2 = (
self._beta2
if not isinstance(self._beta2, Variable)
else self._beta2.item(0)
)
_, _, _, _, _, _ = _C_ops.adamw_(
param_and_grad[0],
param_and_grad[1],
lr,
moment1,
moment2,
beta1_pow_acc,
beta2_pow_acc,
master_weight,
None,
_beta1,
_beta2,
self._epsilon,
lr_ratio_,
self._weight_decay,
with_decay,
self._lazy_mode,
1000,
find_master,
False,
)
return None
else:
inputs = {
"Param": [param_and_grad[0]],
"Grad": [param_and_grad[1]],
"LearningRate": [lr],
"Moment1": [moment1],
"Moment2": [moment2],
"Beta1Pow": [beta1_pow_acc],
"Beta2Pow": [beta2_pow_acc],
}
# Pass found_inf to adamw, to skip update for not only param, but also momentum and beta_pow
found_inf = self._get_auxiliary_var('found_inf')
if found_inf:
inputs['SkipUpdate'] = found_inf
outputs = {
"ParamOut": [param_and_grad[0]],
"Moment1Out": [moment1],
"Moment2Out": [moment2],
"Beta1PowOut": [beta1_pow_acc],
"Beta2PowOut": [beta2_pow_acc],
}
attrs = {
"lazy_mode": self._lazy_mode,
"min_row_size_to_use_multithread": 1000,
"multi_precision": find_master,
"with_decay": with_decay,
"coeff": self._weight_decay,
"lr_ratio": 1.0
if self._lr_ratio is None
else self._lr_ratio(param_and_grad[0]),
}
if isinstance(self._beta1, Variable):
inputs['Beta1Tensor'] = self._beta1
else:
attrs['beta1'] = self._beta1
if isinstance(self._beta2, Variable):
inputs['Beta2Tensor'] = self._beta2
else:
attrs['beta2'] = self._beta2
if isinstance(self._epsilon, Variable):
inputs['EpsilonTensor'] = self._epsilon
else:
attrs['epsilon'] = self._epsilon
if find_master:
inputs["MasterParam"] = master_weight
outputs["MasterParamOut"] = master_weight
adamw_op = block.append_op(
type=self.type,
inputs=inputs,
outputs=outputs,
attrs=attrs,
stop_gradient=True,
)
return adamw_op
def __str__(self):
return " ".join(["Weight Decay, params:", ",".join(self._params_name)])
@imperative_base.no_grad
@framework.non_static_only
def step(self):
"""
Execute the optimizer and update parameters once.
Returns:
None
Examples:
.. code-block:: python
import paddle
a = paddle.rand([2,13], dtype="float32")
linear = paddle.nn.Linear(13, 5)
# This can be any optimizer supported by dygraph.
opt = paddle.optimizer.AdamW(learning_rate = 0.01,
parameters = linear.parameters())
out = linear(a)
out.backward()
opt.step()
opt.clear_grad()
"""
if paddle.fluid.dygraph.base.in_declarative_mode():
self._declarative_step()
return
if not isinstance(self._parameter_list[0], dict):
params_grads = []
for param in self._parameter_list:
if param.stop_gradient:
continue
if param._grad_ivar() is not None:
grad_var = param._grad_ivar()
if framework.in_dygraph_mode():
if (
hasattr(grad_var, "is_selected_rows")
and grad_var.is_selected_rows()
and self.regularization is not None
):
raise RuntimeError(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
else:
if (
hasattr(grad_var, "_is_sparse")
and grad_var._is_sparse()
and self.regularization is not None
):
raise RuntimeError(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
params_grads.append((param, grad_var))
optimize_ops = self._apply_optimize(
loss=None, startup_program=None, params_grads=params_grads
)
else:
# optimize parameters in groups
for param_group in self._param_groups:
params_grads = defaultdict(lambda: [])
for param in param_group['params']:
if param.stop_gradient:
continue
if param._grad_ivar() is not None:
grad_var = param._grad_ivar()
if framework.in_dygraph_mode():
if (
hasattr(grad_var, "is_selected_rows")
and grad_var.is_selected_rows()
and self.regularization is not None
):
raise RuntimeError(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
else:
if (
hasattr(grad_var, "_is_sparse")
and grad_var._is_sparse()
and self.regularization is not None
):
raise RuntimeError(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
params_grads['params'].append((param, grad_var))
params_grads.update(
{k: v for k, v in param_group.items() if k != 'params'}
)
self._apply_optimize(
loss=None, startup_program=None, params_grads=params_grads
)
def _update_param_group(self, parameters):
self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
self._lazy_mode = parameters.get(
'lazy_mode', self._default_dict['lazy_mode']
)
self._weight_decay = parameters.get(
'weight_decay', self._default_dict['weight_decay']
)
parameters = parameters.get('params')
return parameters