-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
1628 lines (1432 loc) · 63.5 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from collections import defaultdict
import numpy as np
import paddle
import paddle.autograd as imperative_base
from paddle import _C_ops
from paddle.fluid import core
from paddle.fluid.framework import (
Variable,
_current_expected_place,
_in_eager_without_dygraph_check,
default_main_program,
device_guard,
in_dygraph_mode,
name_scope,
)
from ..fluid import framework, unique_name
from ..fluid.backward import _get_no_grad_set_name, append_backward
from ..fluid.framework import Parameter, program_guard
from ..fluid.layer_helper import LayerHelper
from .lr import LRScheduler
__all__ = []
@framework.static_only
def append_backward_new(
loss_list,
parameter_list=None,
no_grad_set=None,
callbacks=None,
checkpoints=None,
distop_context=None,
):
from paddle.incubate.autograd.primx import Transform, orig2prim
program = default_main_program()
assert (
program.num_blocks == 1
), "The append_backward_new interface is designed to process only one block."
block = program.current_block()
for el in loss_list:
assert (
el.block == block
), 'variable in loss_list should be in current block of main program'
orig2prim(block)
ad = Transform(block)
if parameter_list is None:
parameter_list = program.global_block().all_parameters()
param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
loss_bar, param_bar = ad.transpose(loss_dot, param_dot)
# remove param_dot and their constructor ops
op_indexes = []
for var in param_dot:
if var is not None:
op_index = block.ops.index(var.op)
assert op_index >= 0
op_indexes.append(op_index)
ad.erase_ops(sorted(op_indexes))
ad.erase_dots(param_dot)
if len(parameter_list) == 1:
params_and_grads = [(parameter_list, param_bar)]
else:
params_and_grads = []
for i, param in enumerate(parameter_list):
params_and_grads.append((param, param_bar[i]))
return params_and_grads
class Optimizer:
r"""Optimizer Base class.
Define the common interface of an optimizer.
User should not use this class directly,
but need to use one of it's implementation.
Args:
learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
It can be a float value or any subclass of ``LRScheduler`` .
parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
This parameter is required in dygraph mode. And you can specify different options for \
different parameter groups such as the learning rate, weight decay, etc, \
then the parameters are list of dict. Note that the learning_rate in paramter groups \
represents the scale of base learning_rate. \
The default value is None in static graph mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
some derived class of ``GradientClipBase`` . There are three cliping strategies \
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
Returns:
Base class for optimizer.
Examples:
.. code-block:: python
#Take the subclass adam as an example
import paddle
linear = paddle.nn.Linear(10, 10)
inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
out = linear(inp)
loss = paddle.mean(out)
adam = paddle.optimizer.Adam(learning_rate=0.1,
parameters=linear.parameters())
loss.backward()
adam.step()
adam.clear_grad()
#Take the subclass sgd as an example
#optimize parameters in linear_1 and linear2 in different options.
#Note that the learning_rate of linear_2 is 0.01.
linear_1 = paddle.nn.Linear(10, 10)
linear_2 = paddle.nn.Linear(10, 10)
inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
out = linear_1(inp)
out = linear_2(out)
loss = paddle.mean(out)
sgd = paddle.optimizer.SGD(
learning_rate=0.1,
parameters=[{
'params': linear_1.parameters()
}, {
'params': linear_2.parameters(),
'weight_decay': 0.001,
'learning_rate': 0.1
}],
weight_decay=0.01)
loss.backward()
sgd.step()
sgd.clear_grad()
"""
@imperative_base.no_grad()
def __init__(
self,
learning_rate,
parameters=None,
weight_decay=None,
grad_clip=None,
name=None,
):
if parameters is not None:
# paddle.Tensor is also iterable, so here we don't check whether
# the input is iterable, if the input is paddle.Tensor, the
# list(paddle.Tensor) will be a error value
if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
raise TypeError(
"`parameters` argument given to the optimizer should be "
"an iterable of paddle Tensors, but got argument type is `{}`.".format(
type(parameters)
)
)
if isinstance(parameters, dict):
raise TypeError(
"`parameters` argument should not get dict type, "
"if parameter groups is needed, please set `parameters`"
" as list of dict"
)
self._parameter_list = list(parameters)
else:
self._parameter_list = None
self._name = name
if framework._non_static_mode():
if self._parameter_list is None:
raise AttributeError(
"parameters argument given to the Optimizer should not be None in dygraph mode."
)
if weight_decay is not None:
if not isinstance(self._parameter_list[0], dict):
for param in self._parameter_list:
if (
hasattr(param, 'regularizer')
and param.regularizer is not None
):
logging.info(
"If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
"The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
% weight_decay.__str__()
)
break
if not isinstance(learning_rate, (float, LRScheduler)):
raise TypeError(
"learning rate should be float or LRScheduler, got %s here"
% type(learning_rate)
)
if grad_clip is not None:
if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
raise TypeError(
"'grad_clip' should be an instance of GradientClipBase's derived class"
)
if isinstance(weight_decay, float):
from ..fluid.regularizer import L2Decay
self.regularization = L2Decay(weight_decay)
else:
self.regularization = weight_decay
self._grad_clip = grad_clip
self._learning_rate = learning_rate
self._dtype = None
# Infer the dtype form parameter
if self._parameter_list:
if isinstance(self._parameter_list[0], dict):
for param_group in self._parameter_list:
assert (
'params' in param_group
), 'params should be set in parameters if parameter groups are optimized in different options'
self._dtype = self._parameter_list[0]['params'][0].dtype
else:
self._dtype = self._parameter_list[0].dtype
# each program should have a independent learning rate
# program -> tensor(learning_rate)
self._learning_rate_map = {}
# Dictionary of accumulators. Some optimizer subclasses need to
# allocate and manage extra tensors associated with the parameters
# to train. These tensors are called accumulators.
# {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
self._accumulators = defaultdict(lambda: {})
self.helper = None
self._opti_name_list = []
self._accumulators_holder = {}
self._param_device_map = {}
self.clear_gradients = self.clear_grad
self._default_dict = {
'weight_decay': self.regularization,
'grad_clip': self._grad_clip,
}
self._param_groups = []
if self._parameter_list and isinstance(self._parameter_list[0], dict):
for param_group in self._parameter_list:
self._add_param_group(param_group.copy())
else:
self._param_groups = self._parameter_list
# NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
# Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
self._use_multi_tensor = None
self._param_dict = self._create_multi_tensor_dict()
self._auxiliary_vars = {}
self._already_create_accumulater = set()
def _set_auxiliary_var(self, key, val):
self._auxiliary_vars[key] = val
def _create_multi_tensor_dict(self):
n = len(self._param_groups) if self._param_groups is not None else 1
return {
'FP32_LODTensor': [[] for _ in range(n)],
'FP16_LODTensor': [[] for _ in range(n)],
}
def _get_auxiliary_var(self, key):
return self._auxiliary_vars.get(key, None)
@framework.dygraph_only
def state_dict(self):
'''
Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
If the optimizer never be called(minimize function), the state_dict is empty.
Args:
None
Returns:
state_dict(dict) : dict contains all the Tensor used by optimizer
Examples:
.. code-block:: python
import paddle
emb = paddle.nn.Embedding(10, 10)
adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
state_dict = adam.state_dict()
'''
state_dict = {}
for k, v in self._accumulators.items():
for para_name, var_tmp in v.items():
state_dict[var_tmp.name] = var_tmp
# if has master weight and then save master weight
if hasattr(self, "_master_weights"):
if len(self._master_weights) != 0:
state_dict["master_weights"] = self._master_weights
# global step if use lr decay
if isinstance(self._learning_rate, LRScheduler):
state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
return state_dict
@framework.dygraph_only
def set_state_dict(self, state_dict):
'''
Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
Args:
state_dict(dict) : Dict contains all the Tensor needed by optimizer
Return:
None
Examples:
.. code-block:: python
import paddle
emb = paddle.nn.Embedding(10, 10)
layer_state_dict = emb.state_dict()
paddle.save(layer_state_dict, "emb.pdparams")
scheduler = paddle.optimizer.lr.NoamDecay(
d_model=0.01, warmup_steps=100, verbose=True)
adam = paddle.optimizer.Adam(
learning_rate=scheduler,
parameters=emb.parameters())
opt_state_dict = adam.state_dict()
paddle.save(opt_state_dict, "adam.pdopt")
opti_state_dict = paddle.load("adam.pdopt")
adam.set_state_dict(opti_state_dict)
'''
if isinstance(self._learning_rate, LRScheduler):
self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
# NOTE: exclude learning rate scheduler's state from
# _accumulators_holder.
state_dict = state_dict.copy()
if "LR_Scheduler" in state_dict:
state_dict.pop("LR_Scheduler")
if "master_weights" in state_dict:
if hasattr(self, "_master_weights"):
self._master_weights = state_dict["master_weights"]
state_dict.pop("master_weights")
self._accumulators_holder = state_dict
for k, v in self._accumulators.items():
for para_name, var_tmp in v.items():
assert (
var_tmp.name in state_dict
), f"optimizer Tensor {var_tmp.name} not found"
var = var_tmp.value()
tensor = var.get_tensor()
model_np = np.array(tensor)
load_para = state_dict[var_tmp.name]
if isinstance(load_para, Variable):
load_para_np = np.array(load_para)
elif isinstance(load_para, core.eager.Tensor):
load_para_np = np.array(load_para)
elif isinstance(load_para, np.ndarray):
load_para_np = load_para
else:
raise RuntimeError(
"State dict type {} not supprt".format(
str(type(load_para))
)
)
assert (
model_np.shape == load_para_np.shape
), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
model_np.name, model_np.shape, load_para_np.shape
)
assert (
model_np.dtype == load_para_np.dtype
), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {} but load tensor with dtype {}".format(
model_np.name, model_np.dtype, load_para_np.dtype
)
tensor.set(load_para_np, framework._current_expected_place())
def get_opti_var_name_list(self):
return self._opti_name_list
def _create_global_learning_rate(self):
def do_create():
# lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
_lr_dtype = (
paddle.get_default_dtype()
if self._dtype is None
else self._dtype
)
_lr_dtype = (
paddle.float32
if (
(
paddle.get_default_dtype() != "float16"
and _lr_dtype == paddle.float16
)
or (
paddle.get_default_dtype() != "bfloat16"
and _lr_dtype == paddle.bfloat16
)
)
else _lr_dtype
)
if isinstance(self._learning_rate, LRScheduler):
lr_var = self._global_learning_rate()
# only create global lr_var once
if not isinstance(lr_var, framework.Variable):
lr_name = unique_name.generate('learning_rate')
self._learning_rate._var_name = lr_name
lr_var = self.helper.create_global_variable(
name=lr_name,
shape=[],
persistable=True,
stop_gradient=True,
dtype=_lr_dtype,
)
main_prog = framework.default_main_program()
main_prog.lr_scheduler = self._learning_rate
main_prog.lr_var = lr_var
self._learning_rate_map[
framework.default_main_program()
] = lr_var
lr_value = float(self._learning_rate())
self.helper.set_variable_initializer(
lr_var,
initializer=paddle.nn.initializer.Constant(value=lr_value),
)
elif isinstance(self._learning_rate, float):
# only create global lr_var once
lr = self._global_learning_rate()
if isinstance(lr, framework.Variable):
return
else:
self._learning_rate_map[
framework.default_main_program()
] = paddle.static.create_global_var(
name=unique_name.generate("learning_rate"),
shape=[],
value=float(self._learning_rate),
dtype=_lr_dtype,
persistable=True,
)
with paddle.fluid.framework.dygraph_guard_if_declarative():
do_create()
@framework.dygraph_only
def set_lr(self, value):
"""
:api_attr: imperative
Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
this API cannot be invoked, because it will lead to conflict.
Args:
value (float): the value of learning rate
Returns:
None
Examples:
.. code-block:: python
import paddle
linear = paddle.nn.Linear(10, 10)
adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())
# set learning rate manually by python float value
lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
for i in range(5):
adam.set_lr(lr_list[i])
lr = adam.get_lr()
print("current lr is {}".format(lr))
# Print:
# current lr is 0.2
# current lr is 0.3
# current lr is 0.4
# current lr is 0.5
# current lr is 0.6
"""
if not isinstance(value, (int, float)):
raise TypeError(
"The type of 'value' in optimizer.set_lr must be float, but received %s."
% (type(value))
)
if isinstance(self._learning_rate, LRScheduler):
raise RuntimeError(
"optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
)
self._learning_rate = float(value)
current_lr = self._global_learning_rate()
if current_lr is not None:
if in_dygraph_mode():
place = _current_expected_place()
_C_ops.full_(
current_lr,
list(current_lr.shape),
float(value),
current_lr.dtype,
place,
)
else:
global_block = framework.default_main_program().global_block()
global_block.append_op(
type='fill_constant',
outputs={'Out': [current_lr]},
attrs={
'dtype': current_lr.dtype,
'shape': list(current_lr.shape),
'value': float(value),
},
stop_gradient=True,
)
def get_lr(self):
"""
Get current learning rate of optimizer.
If 'LRScheduler' is not used, the return value is all the same.
If 'LRScheduler' is used, the return value is the current scheduled learing rete.
Returns:
float: The current learning rate of optimizer.
Examples:
.. code-block:: python
# train on default dynamic graph mode
import paddle
import numpy as np
emb = paddle.nn.Embedding(10, 3)
## example1: LRScheduler is not used, return the same value is all the same
adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
for batch in range(10):
input = paddle.randint(low=0, high=5, shape=[5])
out = emb(input)
out.backward()
print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
adam.step()
## example2: StepDecay is used, return the scheduled learning rate
scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
for batch in range(10):
input = paddle.randint(low=0, high=5, shape=[5])
out = emb(input)
out.backward()
print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
adam.step()
scheduler.step()
# train on static graph mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[None, 10])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
adam = paddle.optimizer.Adam(learning_rate=scheduler)
adam.minimize(loss)
exe = paddle.static.Executor()
exe.run(start_prog)
for batch in range(10):
print("Learning rate of step{}: {}", adam.get_lr()) # 0.5->0.05->0.005...
out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
scheduler.step()
"""
if isinstance(self._learning_rate, float):
return self._learning_rate
else:
return self._learning_rate()
def _global_learning_rate(self, program=None):
"""
get global decayed learning rate
:return:
"""
if program is None:
program = framework.default_main_program()
return self._learning_rate_map.get(program, None)
def _append_optimize_op(self, block, param_and_grad):
"""append optimize operator to block and return all the added optimize_op"""
raise NotImplementedError(
"Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
)
def _create_param_lr(self, param_and_grad):
# create learning rate tensor for every parameter
param = param_and_grad[0]
if hasattr(param, 'optimize_attr'):
param_lr = param.optimize_attr['learning_rate']
if type(param_lr) == Variable:
return param_lr
else:
if param_lr == 1.0:
return self._global_learning_rate()
else:
with default_main_program()._lr_schedule_guard(
is_with_opt=True
), framework.name_scope('scale_with_param_lr'):
return self._global_learning_rate() * param_lr
else:
return self._global_learning_rate()
def _create_master_weight(self, param):
if param.name in self._master_weights:
var = self._master_weights[param.name]
else:
assert isinstance(self.helper, LayerHelper)
var_name = param.name + "_fp32_master"
var_name = unique_name.generate(var_name)
var = paddle.static.create_global_var(
name=var_name,
shape=param.shape,
value=0,
dtype='float32',
persistable=True,
)
block = self.helper.startup_program.global_block()
block.append_op(
type="cast",
inputs={"X": [param]},
outputs={"Out": [var]},
attrs={
"in_dtype": param.dtype,
"out_dtype": core.VarDesc.VarType.FP32,
},
)
self._master_weights[param.name] = var
return var
def _create_accumulators(self, block, parameters):
"""Create all accumulators needed by the parameters
Args:
block: the block in which the loss tensor is present
parameters: list of parameter tensors for the optimizer
"""
pass
def _finish_update(self, block, parameters_and_grads):
"""Finish any custom updates needed
before completing an optimization step
Args:
block: the block in which the loss tensor is present
parameters: list of parameter tensors for the optimizer
Returns:
None
"""
pass
def _add_accumulator(
self,
name,
param,
dtype=None,
fill_value=0.0,
shape=None,
type=None,
device=None,
):
"""Utility function to add an accumulator for a parameter
Args:
block: the block in which the loss tensor is present
name: name of the accumulator
param: parameter tensor for which accumulator is to be added
dtype: data type of the accumulator tensor
fill_value: value to initialize the accumulator tensor
"""
if self._name is not None:
name = self._name + "_" + name
if (
name in self._accumulators
and param.name in self._accumulators[name]
):
if framework._non_static_mode():
return self._accumulators[name][param.name]
raise Exception(
"Accumulator {} already exists for parameter {}".format(
name, param.name
)
)
if shape is None:
shape = param.shape
assert isinstance(self.helper, LayerHelper)
var_name = param.name + "_" + name
var_name = unique_name.generate(var_name)
self._opti_name_list.append(var_name)
var = self.helper.create_global_variable(
name=var_name,
persistable=True,
dtype=dtype or param.dtype,
type=core.VarDesc.VarType.LOD_TENSOR
if framework._in_eager_without_dygraph_check()
else (param.type if type is None else type),
shape=shape,
belong_to_optimizer=True,
)
if device is None:
device = self._get_device_for_param(param.name)
if (
in_dygraph_mode()
and (device == 'cpu' or isinstance(device, core.CPUPlace))
and (not core.is_compiled_with_xpu())
):
_C_ops.full_(
var,
var.shape,
str(float(fill_value)),
var.dtype,
core.CPUPlace(),
)
else:
with device_guard(device):
self.helper.set_variable_initializer(
var,
initializer=paddle.nn.initializer.Constant(
value=float(fill_value)
),
)
if framework._non_static_mode():
if len(self._accumulators_holder) > 0:
assert (
var_name in self._accumulators_holder
), "Optimizer set error, {} should in state dict".format(
var_name
)
var.set_value(self._accumulators_holder[var_name])
self._accumulators[name][param.name] = var
return var
def _get_accumulator(self, name, param):
"""Utility function to fetch an accumulator for a parameter
Args:
name: name of the accumulator
param: parameter tensor for which accumulator is to be fetched
Returns:
accumulator tensor for the parameter
"""
if self._name is not None:
name = self._name + "_" + name
if (
name not in self._accumulators
or param.name not in self._accumulators[name]
):
raise Exception(
"Accumulator {} does not exist for parameter {}".format(
name, param.name
)
)
return self._accumulators[name][param.name]
def _get_accumulator_master(self, name, param):
"""Utility function to fetch an accumulator for a parameter
Args:
name: name of the accumulator
param: parameter variable for which accumulator is to be fetched
Returns:
accumulator variable for the parameter
"""
if self._name is not None:
name = self._name + "_" + name
find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
param.dtype
)
target_param = (
self._master_weights[param.name] if find_master else param
)
target_name = target_param.name
if (
name not in self._accumulators
or target_name not in self._accumulators[name]
):
raise Exception(
"Accumulator {} does not exist for parameter {}".format(
name, target_name
)
)
return self._accumulators[name][target_name]
def _update_param_device_map(self, parameters_and_grads, target_block):
for param_and_grad in parameters_and_grads:
if param_and_grad[0].stop_gradient is False:
param_name = param_and_grad[0].name
ops = target_block.ops
device_attr_name = (
core.op_proto_and_checker_maker.kOpDeviceAttrName()
)
for op in ops:
input_arg_names = op.input_arg_names
if param_name in input_arg_names:
self._param_device_map[param_name] = op.attr(
device_attr_name
)
break
def _get_device_for_param(self, param_name):
device = None
if param_name in self._param_device_map:
device = self._param_device_map[param_name]
return device
def _create_optimization_pass(
self, parameters_and_grads, param_group_idx=0
):
"""Add optimization operators to update gradients to tensors.
Args:
parameters_and_grads(list(tuple(Tensor, Tensor))):
a list of (tensor, gradient) pair to update.
Returns:
return_op_list: a list of operators that will complete one step of
optimization. This will include parameter update ops, global step
update ops and any other custom ops required by subclasses to manage
their internal state.
"""
# This is a default implementation of create_optimization_pass that
# can be shared by most optimizers. This implementation assumes that
# the subclass will implement the _append_optimize_op method and the
# _initialize_tensors method. The subclass can extend the
# _create_accumulators method if it needs to create accumulators
# for parameters and extend _finish_update method to add custom ops.
# Allways called under program_guard use global block as loss block
# But if current block is in control flow, append optimize op in the
# grad block of current block
global_block = framework.default_main_program().global_block()
target_block = global_block
current_block = framework.default_main_program().current_block()
if current_block.idx != global_block.idx:
assert (
current_block.backward_block_idx != -1
), "current block is not global_block, but it doesn't have backward block."
target_block = framework.default_main_program().blocks[
current_block.backward_block_idx
]
start = len(target_block.ops)
self.helper = LayerHelper(self.__class__.__name__)
self._create_global_learning_rate()
# NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
if self._use_multi_tensor and self.__class__.__name__ in [
'Momentum',
'Adam',
]:
if (
len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
and len(self._param_dict['FP16_LODTensor'][param_group_idx])
== 0
):
if isinstance(parameters_and_grads, list):
assert param_group_idx == 0
self._multi_tensor_init(
target_block,
[
p[0]
for p in parameters_and_grads
if not p[0].stop_gradient
],
param_group_idx,
)
else:
self._update_param_group(parameters_and_grads)
self._multi_tensor_init(
target_block,
[
p[0]
for p in parameters_and_grads['params']
if not p[0].stop_gradient
],
param_group_idx,
)
if framework._non_static_mode():
self._append_optimize_multi_tensor_op(
target_block,
parameters_and_grads,
param_group_idx=param_group_idx,
)
else:
self._update_param_device_map(
parameters_and_grads, target_block
)
# NOTE: Multi Tensor requires all parameters to be in the same device and program.
# param_grad_list = [p_0,g_0,p_1,g_1,....]
param_grad_list = []
for param_and_grad in parameters_and_grads:
if (
not param_and_grad[0].stop_gradient
and param_and_grad[1] is not None
):
param_grad_list.append(param_and_grad[0])
param_grad_list.append(param_and_grad[1])
with param_grad_list[0].block.program._optimized_guard(
param_grad_list
), name_scope("optimizer"):
device = self._get_device_for_param(param_grad_list[0].name)
with device_guard(device):
self._append_optimize_multi_tensor_op(
target_block,
parameters_and_grads,
param_group_idx=param_group_idx,
)
else:
if not framework._non_static_mode():
params_grads_device_map = (
parameters_and_grads['params']
if isinstance(parameters_and_grads, dict)
else parameters_and_grads
)
self._update_param_device_map(
params_grads_device_map, target_block
)
if isinstance(parameters_and_grads, list):
with paddle.fluid.framework.dygraph_guard_if_declarative():
self._create_accumulators(
target_block,
[
p[0]
for p in parameters_and_grads
if not p[0].stop_gradient
],
)
else:
params_acc_dict = parameters_and_grads.copy()
params_acc_dict['params'] = [
p[0]
for p in params_acc_dict['params']
if not p[0].stop_gradient
]
with paddle.fluid.framework.dygraph_guard_if_declarative():
self._create_accumulators(target_block, params_acc_dict)
if framework._non_static_mode():
found_inf = self._get_auxiliary_var('found_inf')
if found_inf:
if isinstance(found_inf, core.eager.Tensor):
self._set_auxiliary_var('found_inf', True)
else:
if isinstance(found_inf, core.eager.Tensor):
self._set_auxiliary_var('found_inf', False)
if isinstance(parameters_and_grads, list):
for param_and_grad in parameters_and_grads:
if param_and_grad[1] is None: