diff --git a/README.md b/README.md index a882409..112c3f1 100644 --- a/README.md +++ b/README.md @@ -10,27 +10,44 @@ Please click the [Google Drive link](https://drive.google.com/drive/folders/1fMe Run scripts to evaluate the features on FSL tasks for Y and ASY. For EY and EASY use the corresponding features. ### Inductive setup using NCM -Test features on miniimagenet using Y +Test features on miniimagenet using Y (Resnet12) - $ python main.py --dataset miniimagenet --model resnet12 --test-features "features path" --preprocessing ME + $ python main.py --dataset-path "" --dataset miniimagenet --model resnet12 --test-features '/minifeatures1.pt11' --preprocessing ME -Test features on miniimagenet using ASY +Test features on miniimagenet using ASY (Resnet12) + + $ python main.py --dataset-path "" --dataset miniimagenet --model resnet12 --test-features '/minifeatures1.pt11' --preprocessing ME --sample-aug 30 + +Test features on miniimagenet using EY (3xResNet12) + + $ python main.py --dataset-path "" --dataset miniimagenet --model resnet12 --test-features "[/minifeatures1.pt11, /minifeatures2.pt11, /minifeatures1.pt11]" --preprocessing ME + +Test features on miniimagenet using EASY (3xResNet12) + + $ python main.py --dataset-path "" --dataset miniimagenet --model resnet12 --test-features "[/minifeatures1.pt11, /minifeatures2.pt11, /minifeatures1.pt11]" --preprocessing ME --sample-aug 30 - $ python main.py --dataset miniimagenet --model resnet12 --test-features "features path" --preprocessing ME --sample-aug 30 ### Transductive setup using Soft k-means Test features on miniimagenet using Y - $ python main.py --dataset miniimagenet --model resnet12 --test-features "features path" --preprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 100 + $ python main.py --dataset-path "" --dataset miniimagenet --model resnet12 --test-features '/minifeatures1.pt11'--postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20 Test features on miniimagenet using ASY - $ python main.py --dataset miniimagenet --model resnet12 --test-features "features path" --preprocessing ME --sample-aug 30 --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20 + $ python main.py --dataset-path "" --dataset miniimagenet --model resnet12 --test-features '/minifeatures1.pt11' --postprocessing ME --sample-aug 30 --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20 + +Test features on miniimagenet using EY + + $ python main.py --dataset-path "" --dataset miniimagenet --model resnet12 --test-features "[/minifeatures1.pt11, /minifeatures2.pt11, /minifeatures1.pt11]" --postrocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20 + +Test features on miniimagenet using EASY + + $ python main.py --dataset miniimagenet --model resnet12 --test-features "[/minifeatures1.pt11, /minifeatures2.pt11, /minifeatures1.pt11]" --postrocessing ME --sample-aug 30 --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20 -## Training scripts for ASY +## Training scripts for Y Train a model on miniimagenet using manifold mixup, self-supervision and cosine scheduler - $ python main.py --dataset-path "dataset path" --dataset miniimagenet --model resnet12 --epochs 0 --manifold-mixup 500 --rotations --cosine --gamma 0.9 --milestones 100 --batch-size 128 --preprocessing ME + $ python main.py --dataset-path "" --dataset miniimagenet --model resnet12 --epochs 0 --manifold-mixup 500 --rotations --cosine --gamma 0.9 --milestones 100 --batch-size 128 --preprocessing ME ## Important Arguments Some important arguments for our code.