forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom_count.Rd
103 lines (86 loc) · 3.67 KB
/
geom_count.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/geom-count.r, R/stat-sum.r
\name{geom_count}
\alias{geom_count}
\alias{stat_sum}
\title{Count the number of observations at each location.}
\usage{
geom_count(mapping = NULL, data = NULL, stat = "sum",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...)
stat_sum(mapping = NULL, data = NULL, geom = "point",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...)
}
\arguments{
\item{mapping}{Set of aesthetic mappings created by \code{\link{aes}} or
\code{\link{aes_}}. If specified and \code{inherit.aes = TRUE} (the
default), is combined with the default mapping at the top level of the
plot. You only need to supply \code{mapping} if there isn't a mapping
defined for the plot.}
\item{data}{A data frame. If specified, overrides the default data frame
defined at the top level of the plot.}
\item{position}{Position adjustment, either as a string, or the result of
a call to a position adjustment function.}
\item{na.rm}{If \code{FALSE} (the default), removes missing values with
a warning. If \code{TRUE} silently removes missing values.}
\item{show.legend}{logical. Should this layer be included in the legends?
\code{NA}, the default, includes if any aesthetics are mapped.
\code{FALSE} never includes, and \code{TRUE} always includes.}
\item{inherit.aes}{If \code{FALSE}, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. \code{\link{borders}}.}
\item{...}{other arguments passed on to \code{\link{layer}}. There are
three types of arguments you can use here:
\itemize{
\item Aesthetics: to set an aesthetic to a fixed value, like
\code{color = "red"} or \code{size = 3}.
\item Other arguments to the layer, for example you override the
default \code{stat} associated with the layer.
\item Other arguments passed on to the stat.
}}
\item{geom, stat}{Use to override the default connection between
\code{geom_count} and \code{stat_sum}.}
}
\description{
This is a variant \code{\link{geom_point}} that counts the number of
observations at each location, then maps the count to point size. It
useful when you have discrete data.
}
\section{Aesthetics}{
\Sexpr[results=rd,stage=build]{ggplot2:::rd_aesthetics("geom", "point")}
}
\section{Computed variables}{
\describe{
\item{n}{number of observations at position}
\item{prop}{percent of points in that panel at that position}
}
}
\examples{
ggplot(mpg, aes(cty, hwy)) +
geom_point()
ggplot(mpg, aes(cty, hwy)) +
geom_count()
# Best used in conjunction with scale_size_area which ensures that
# counts of zero would be given size 0. Doesn't make much different
# here because the smallest count is already close to 0.
ggplot(mpg, aes(cty, hwy)) +
geom_count()
scale_size_area()
# Display proportions instead of counts -------------------------------------
# By default, all categorical variables in the plot form the groups.
# Specifying geom_count without a group identifier leads to a plot which is
# not useful:
d <- ggplot(diamonds, aes(x = cut, y = clarity))
d + geom_count(aes(size = ..prop..))
# To correct this problem and achieve a more desirable plot, we need
# to specify which group the proportion is to be calculated over.
d + geom_count(aes(size = ..prop.., group = 1)) +
scale_size_area(max_size = 10)
# Or group by x/y variables to have rows/columns sum to 1.
d + geom_count(aes(size = ..prop.., group = cut)) +
scale_size_area(max_size = 10)
d + geom_count(aes(size = ..prop.., group = clarity)) +
scale_size_area(max_size = 10)
}