forked from tqch/ddpm-torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
305 lines (268 loc) · 14.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import json
import os
import tempfile
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from datetime import datetime
from ddim import *
from ddpm_torch import *
from functools import partial
from torch.distributed.elastic.multiprocessing import errors
from torch.nn.parallel import DistributedDataParallel as DDP # noqa
from torch.optim import Adam, lr_scheduler
def train(rank=0, args=None, temp_dir=""):
distributed = args.distributed
def logger(msg, **kwargs):
if not distributed or dist.get_rank() == 0:
print(msg, **kwargs)
root = os.path.expanduser(args.root)
if args.config_path is None:
args.config_path = os.path.join(args.config_dir, args.dataset + ".json")
with open(args.config_path, "r") as f:
meta_config = json.load(f)
exp_name = os.path.basename(args.config_path)[:-5]
# dataset basic info
dataset = meta_config.get("dataset", args.dataset)
in_channels = DATASET_INFO[dataset]["channels"]
image_res = DATASET_INFO[dataset]["resolution"]
image_shape = (in_channels, ) + image_res
# set seed for RNGs
seed = meta_config.get("seed", args.seed)
seed_all(seed)
# extract training-specific hyperparameters
gettr = partial(get_param, obj_1=meta_config.get("train", {}), obj_2=args)
train_config = ConfigDict(**{
k: gettr(k) for k in (
"batch_size", "beta1", "beta2", "lr", "epochs", "grad_norm", "warmup",
"chkpt_intv", "image_intv", "num_samples", "use_ema", "ema_decay")})
train_config.batch_size //= args.num_accum
train_device = torch.device(args.train_device)
eval_device = torch.device(args.eval_device)
# extract diffusion-specific hyperparameters
getdif = partial(get_param, obj_1=meta_config.get("diffusion", {}), obj_2=args)
diffusion_config = ConfigDict(**{
k: getdif(k) for k in (
"beta_schedule", "beta_start", "beta_end", "timesteps",
"model_mean_type", "model_var_type", "loss_type")})
betas = get_beta_schedule(
diffusion_config.beta_schedule, beta_start=diffusion_config.beta_start,
beta_end=diffusion_config.beta_end, timesteps=diffusion_config.timesteps)
diffusion = GaussianDiffusion(betas=betas, **diffusion_config)
# extract model-specific hyperparameters
out_channels = 2 * in_channels if diffusion_config.model_var_type == "learned" else in_channels
model_config = meta_config["model"]
block_size = model_config.pop("block_size", args.block_size)
model_config["in_channels"] = in_channels * block_size ** 2
model_config["out_channels"] = out_channels * block_size ** 2
_model = UNet(**model_config)
if block_size > 1:
pre_transform = torch.nn.PixelUnshuffle(block_size) # space-to-depth
post_transform = torch.nn.PixelShuffle(block_size) # depth-to-space
_model = ModelWrapper(_model, pre_transform, post_transform)
if distributed:
# check whether torch.distributed is available
# CUDA devices are required to run with NCCL backend
assert dist.is_available() and torch.cuda.is_available()
if args.rigid_launch:
# launched by torch.multiprocessing.spawn
# share information and initialize the distributed package via shared file-system (FileStore)
# adapted from https://github.com/NVlabs/stylegan2-ada-pytorch
# currently, this only supports single-node training
assert temp_dir, "Temporary directory cannot be empty!"
init_method = f"file://{os.path.join(os.path.abspath(temp_dir), '.torch_distributed_init')}"
dist.init_process_group("nccl", init_method=init_method, rank=rank, world_size=args.num_gpus)
local_rank = rank
os.environ["WORLD_SIZE"] = str(args.num_gpus)
os.environ["LOCAL_RANK"] = str(rank)
else:
# launched by either torch.distributed.elastic (single-node) or Slurm srun command (multi-node)
# elastic launch with C10d rendezvous backend by default uses TCPStore
# initialize with environment variables for maximum customizability
world_size = int(os.environ.get("WORLD_SIZE", os.environ.get("SLURM_NTASKS", "1")))
rank = int(os.environ.get("RANK", os.environ.get("SLURM_PROCID", "0")))
dist.init_process_group("nccl", init_method="env://", world_size=world_size, rank=rank)
# global process id across all node(s)
local_world_size = (int(os.environ.get("LOCAL_WORLD_SIZE", "0")) or
int(os.environ.get("SLURM_GPUS_ON_NODE", "0")) or
torch.cuda.device_count())
# local device id on a single node
local_rank = int(os.environ.get("LOCAL_RANK", "0")) or rank % local_world_size
args.num_gpus = world_size or local_world_size
os.environ["WORLD_SIZE"] = os.environ.get("WORLD_SIZE", str(world_size))
logger(f"Using distributed training with {args.num_gpus} GPU(s).")
torch.cuda.set_device(local_rank)
_model.cuda()
model = DDP(_model, device_ids=[local_rank, ])
train_device = torch.device(f"cuda:{local_rank}")
else:
rank = local_rank = 0
model = _model.to(train_device)
is_leader = rank == 0 # rank 0: leader in the process group
logger(f"Dataset: {dataset}")
logger(
f"Effective batch-size is {train_config.batch_size} * {args.num_accum}"
f" = {train_config.batch_size * args.num_accum}.")
# PyTorch's implementation of Adam differs slightly from TensorFlow in that
# the former follows Algorithm 1 as described in the paper by Kingma & Ba (2015) [1]
# while the latter adopts an alternative approach mentioned just before Section 2.1
# see also https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/training/adam.py#L64-L69
optimizer = Adam(model.parameters(), lr=train_config.lr, betas=(train_config.beta1, train_config.beta2))
# lr_lambda is used to calculate the learning rate multiplicative factor at timestep t (starting from 0)
scheduler = lr_scheduler.LambdaLR(
optimizer, lr_lambda=lambda t: min((t + 1) / train_config.warmup, 1.0)
) if train_config.warmup > 0 else None
split = "all" if dataset == "celeba" else "train"
num_workers = args.num_workers
trainloader, sampler = get_dataloader(
dataset, batch_size=train_config.batch_size, split=split, val_size=0., random_seed=seed,
root=root, drop_last=True, pin_memory=True, num_workers=num_workers, distributed=distributed
) # drop_last to have a static input shape; num_workers > 0 to enable asynchronous data loading
if args.dry_run:
logger("This is a dry run.")
args.chkpt_intv = 1
args.image_intv = 1
chkpt_dir = os.path.join(args.chkpt_dir, exp_name)
chkpt_path = os.path.join(chkpt_dir, args.chkpt_name or f"{exp_name}.pt")
chkpt_intv = args.chkpt_intv
logger(f"Checkpoint will be saved to {os.path.abspath(chkpt_path)}", end=" ")
logger(f"every {chkpt_intv} epoch(s)")
image_dir = os.path.join(args.image_dir, "train", exp_name)
logger(f"Generated images (x{train_config.num_samples}) will be saved to {os.path.abspath(image_dir)}", end=" ")
logger(f"every {train_config.image_intv} epoch(s)")
if is_leader:
model_config["block_size"] = block_size
hps = {
"dataset": dataset,
"seed": seed,
"diffusion": diffusion_config,
"model": model_config,
"train": train_config
}
timestamp = datetime.now().strftime("%Y-%m-%dT%H%M%S%f")
if not os.path.exists(chkpt_dir):
os.makedirs(chkpt_dir)
# keep a record of hyperparameter settings used for this experiment run
with open(os.path.join(chkpt_dir, f"exp_{timestamp}.info"), "w") as f:
json.dump(hps, f, indent=2)
if not os.path.exists(image_dir):
os.makedirs(image_dir)
trainer = Trainer(
model=model,
optimizer=optimizer,
diffusion=diffusion,
epochs=train_config.epochs,
trainloader=trainloader,
sampler=sampler,
scheduler=scheduler,
num_accum=args.num_accum,
use_ema=train_config.use_ema,
grad_norm=train_config.grad_norm,
shape=image_shape,
device=train_device,
chkpt_intv=chkpt_intv,
image_intv=train_config.image_intv,
num_samples=train_config.num_samples,
ema_decay=args.ema_decay,
rank=rank,
distributed=distributed,
dry_run=args.dry_run
)
if args.use_ddim:
subsequence = get_selection_schedule(
args.skip_schedule, size=args.subseq_size, timesteps=diffusion_config.timesteps)
diffusion_eval = DDIM.from_ddpm(diffusion, eta=0., subsequence=subsequence)
else:
diffusion_eval = diffusion
if args.eval:
evaluator = Evaluator(
dataset=dataset,
diffusion=diffusion_eval,
eval_batch_size=args.eval_batch_size,
eval_total_size=args.eval_total_size,
device=eval_device
)
else:
evaluator = None
# in the case of distributed training, resume should always be turned on
resume = args.resume or distributed
if resume:
try:
map_location = {"cuda:0": f"cuda:{local_rank}"} if distributed else train_device
_chkpt_path = args.chkpt_path or chkpt_path
trainer.load_checkpoint(_chkpt_path, map_location=map_location)
except FileNotFoundError:
logger("Checkpoint file does not exist!")
logger("Starting from scratch...")
# use cudnn benchmarking algorithm to select the best conv algorithm
if torch.backends.cudnn.is_available(): # noqa
torch.backends.cudnn.benchmark = True # noqa
logger(f"cuDNN benchmark: ON")
logger("Training starts...", flush=True)
trainer.train(evaluator, chkpt_path=chkpt_path, image_dir=image_dir)
@errors.record
def main():
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--config-path", type=str, help="path to the configuration file")
parser.add_argument("--exp-name", type=str, help="name of the current experiment run")
parser.add_argument("--dataset", choices=DATASET_DICT.keys(), default="cifar10")
parser.add_argument("--root", default="~/datasets", type=str, help="root directory of datasets")
parser.add_argument("--epochs", default=50, type=int, help="total number of training epochs")
parser.add_argument("--lr", default=0.0002, type=float, help="learning rate")
parser.add_argument("--beta1", default=0.9, type=float, help="beta_1 in Adam")
parser.add_argument("--beta2", default=0.999, type=float, help="beta_2 in Adam")
parser.add_argument("--batch-size", default=128, type=int)
parser.add_argument("--num-accum", default=1, type=int, help="number of mini-batches before an update")
parser.add_argument("--block-size", default=1, type=int, help="block size used for pixel shuffle")
parser.add_argument("--timesteps", default=1000, type=int, help="number of diffusion steps")
parser.add_argument("--beta-schedule", choices=["quad", "linear", "warmup10", "warmup50", "jsd"], default="linear")
parser.add_argument("--beta-start", default=0.0001, type=float)
parser.add_argument("--beta-end", default=0.02, type=float)
parser.add_argument("--model-mean-type", choices=["mean", "x_0", "eps"], default="eps", type=str)
parser.add_argument("--model-var-type", choices=["learned", "fixed-small", "fixed-large"], default="fixed-large", type=str) # noqa
parser.add_argument("--loss-type", choices=["kl", "mse"], default="mse", type=str)
parser.add_argument("--num-workers", default=4, type=int, help="number of workers for data loading")
parser.add_argument("--train-device", default="cuda:0", type=str)
parser.add_argument("--eval-device", default="cuda:0", type=str)
parser.add_argument("--image-dir", default="./images", type=str)
parser.add_argument("--image-intv", default=10, type=int)
parser.add_argument("--num-samples", default=64, type=int, help="number of images to sample and save")
parser.add_argument("--config-dir", default="./configs", type=str)
parser.add_argument("--chkpt-dir", default="./chkpts", type=str)
parser.add_argument("--chkpt-name", default="", type=str)
parser.add_argument("--chkpt-intv", default=120, type=int, help="frequency of saving a checkpoint")
parser.add_argument("--seed", default=1234, type=int, help="random seed")
parser.add_argument("--resume", action="store_true", help="to resume training from a checkpoint")
parser.add_argument("--chkpt-path", default="", type=str, help="checkpoint path used to resume training")
parser.add_argument("--eval", action="store_true", help="whether to evaluate fid during training")
parser.add_argument("--eval-total-size", default=50000, type=int)
parser.add_argument("--eval-batch-size", default=256, type=int)
parser.add_argument("--use-ema", action="store_true", help="whether to use exponential moving average")
parser.add_argument("--use-ddim", action="store_true", help="whether to use DDIM sampler for evaluation")
parser.add_argument("--skip-schedule", choices=["linear", "quadratic"], default="linear", type=str)
parser.add_argument("--subseq-size", default=50, type=int)
parser.add_argument("--ema-decay", default=0.9999, type=float, help="decay factor of ema")
parser.add_argument("--distributed", action="store_true", help="whether to use distributed training")
parser.add_argument("--rigid-launch", action="store_true", help="whether to use torch multiprocessing spawn")
parser.add_argument("--num-gpus", default=1, type=int, help="number of gpus for distributed training")
parser.add_argument("--dry-run", action="store_true", help="test-run till the first model update completes")
args = parser.parse_args()
if args.distributed and args.rigid_launch:
mp.set_start_method("spawn")
with tempfile.TemporaryDirectory() as temp_dir:
mp.spawn(train, args=(args, temp_dir), nprocs=args.num_gpus)
else:
"""
As opposed to the case of rigid launch, distributed training now:
(*: elastic launch only; **: Slurm srun only)
*1. handles failures by restarting all the workers
*2.1 assigns RANK and WORLD_SIZE automatically
**2.2 sets MASTER_ADDR & MASTER_PORT manually beforehand via environment variables
*3. allows for number of nodes change
4. uses TCP initialization by default
**5. supports multi-node training
"""
train(args=args)
if __name__ == "__main__":
main()