forked from hpanwar08/detectron2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_rpn.py
210 lines (194 loc) · 9.34 KB
/
test_rpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import logging
import unittest
import torch
from detectron2.config import get_cfg
from detectron2.modeling.backbone import build_backbone
from detectron2.modeling.proposal_generator.build import build_proposal_generator
from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes
from detectron2.utils.events import EventStorage
logger = logging.getLogger(__name__)
class RPNTest(unittest.TestCase):
def test_rpn(self):
torch.manual_seed(121)
cfg = get_cfg()
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RPN"
cfg.MODEL.ANCHOR_GENERATOR.NAME = "DefaultAnchorGenerator"
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1)
backbone = build_backbone(cfg)
proposal_generator = build_proposal_generator(cfg, backbone.output_shape())
num_images = 2
images_tensor = torch.rand(num_images, 20, 30)
image_sizes = [(10, 10), (20, 30)]
images = ImageList(images_tensor, image_sizes)
image_shape = (15, 15)
num_channels = 1024
features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32)
gt_instances = Instances(image_shape)
gt_instances.gt_boxes = Boxes(gt_boxes)
with EventStorage(): # capture events in a new storage to discard them
proposals, proposal_losses = proposal_generator(
images, features, [gt_instances[0], gt_instances[1]]
)
expected_losses = {
"loss_rpn_cls": torch.tensor(0.0804563984),
"loss_rpn_loc": torch.tensor(0.0990132466),
}
for name in expected_losses.keys():
assert torch.allclose(proposal_losses[name], expected_losses[name])
expected_proposal_boxes = [
Boxes(torch.tensor([[0, 0, 10, 10], [7.3365392685, 0, 10, 10]])),
Boxes(
torch.tensor(
[
[0, 0, 30, 20],
[0, 0, 16.7862777710, 13.1362524033],
[0, 0, 30, 13.3173446655],
[0, 0, 10.8602609634, 20],
[7.7165775299, 0, 27.3875980377, 20],
]
)
),
]
expected_objectness_logits = [
torch.tensor([0.1225359365, -0.0133192837]),
torch.tensor([0.1415634006, 0.0989848152, 0.0565387346, -0.0072308783, -0.0428492837]),
]
for i in range(len(image_sizes)):
assert len(proposals[i]) == len(expected_proposal_boxes[i])
assert proposals[i].image_size == (image_sizes[i][0], image_sizes[i][1])
assert torch.allclose(
proposals[i].proposal_boxes.tensor, expected_proposal_boxes[i].tensor
)
assert torch.allclose(proposals[i].objectness_logits, expected_objectness_logits[i])
def test_rrpn(self):
torch.manual_seed(121)
cfg = get_cfg()
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN"
cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"
cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]]
cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1]]
cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [[0, 60]]
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1)
cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead"
backbone = build_backbone(cfg)
proposal_generator = build_proposal_generator(cfg, backbone.output_shape())
num_images = 2
images_tensor = torch.rand(num_images, 20, 30)
image_sizes = [(10, 10), (20, 30)]
images = ImageList(images_tensor, image_sizes)
image_shape = (15, 15)
num_channels = 1024
features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]], dtype=torch.float32)
gt_instances = Instances(image_shape)
gt_instances.gt_boxes = RotatedBoxes(gt_boxes)
with EventStorage(): # capture events in a new storage to discard them
proposals, proposal_losses = proposal_generator(
images, features, [gt_instances[0], gt_instances[1]]
)
expected_losses = {
"loss_rpn_cls": torch.tensor(0.0432923734),
"loss_rpn_loc": torch.tensor(0.1552739739),
}
for name in expected_losses.keys():
assert torch.allclose(proposal_losses[name], expected_losses[name])
expected_proposal_boxes = [
RotatedBoxes(
torch.tensor(
[
[0.60189795, 1.24095452, 61.98131943, 18.03621292, -4.07244873],
[15.64940453, 1.69624567, 59.59749603, 16.34339333, 2.62692475],
[-3.02982378, -2.69752932, 67.90952301, 59.62455750, 59.97010040],
[16.71863365, 1.98309708, 35.61507797, 32.81484985, 62.92267227],
[0.49432933, -7.92979717, 67.77606201, 62.93098450, -1.85656738],
[8.00880814, 1.36017394, 121.81007385, 32.74150467, 50.44297409],
[16.44299889, -4.82221127, 63.39775848, 61.22503662, 54.12270737],
[5.00000000, 5.00000000, 10.00000000, 10.00000000, -0.76943970],
[17.64130402, -0.98095351, 61.40377808, 16.28918839, 55.53118134],
[0.13016054, 4.60568953, 35.80157471, 32.30180359, 62.52872086],
[-4.26460743, 0.39604485, 124.30079651, 31.84611320, -1.58203125],
[7.52815342, -0.91636634, 62.39784622, 15.45565224, 60.79549789],
]
)
),
RotatedBoxes(
torch.tensor(
[
[0.07734215, 0.81635046, 65.33510590, 17.34688377, -1.51821899],
[-3.41833067, -3.11320257, 64.17595673, 60.55617905, 58.27033234],
[20.67383385, -6.16561556, 63.60531998, 62.52315903, 54.85546494],
[15.00000000, 10.00000000, 30.00000000, 20.00000000, -0.18218994],
[9.22646523, -6.84775209, 62.09895706, 65.46472931, -2.74307251],
[15.00000000, 4.93451595, 30.00000000, 9.86903191, -0.60272217],
[8.88342094, 2.65560246, 120.95362854, 32.45022202, 55.75970078],
[16.39088631, 2.33887148, 34.78761292, 35.61492920, 60.81977463],
[9.78298569, 10.00000000, 19.56597137, 20.00000000, -0.86660767],
[1.28576660, 5.49873352, 34.93610382, 33.22600174, 60.51599884],
[17.58912468, -1.63270092, 62.96052551, 16.45713997, 52.91245270],
[5.64749718, -1.90428460, 62.37649155, 16.19474792, 61.09543991],
[0.82255805, 2.34931135, 118.83985901, 32.83671188, 56.50753784],
[-5.33874989, 1.64404404, 125.28501892, 33.35424042, -2.80731201],
]
)
),
]
expected_objectness_logits = [
torch.tensor(
[
0.10111768,
0.09112845,
0.08466332,
0.07589971,
0.06650183,
0.06350251,
0.04299347,
0.01864817,
0.00986163,
0.00078543,
-0.04573630,
-0.04799230,
]
),
torch.tensor(
[
0.11373727,
0.09377633,
0.05281663,
0.05143715,
0.04040275,
0.03250912,
0.01307789,
0.01177734,
0.00038105,
-0.00540255,
-0.01194804,
-0.01461012,
-0.03061717,
-0.03599222,
]
),
]
torch.set_printoptions(precision=8, sci_mode=False)
for i in range(len(image_sizes)):
assert len(proposals[i]) == len(expected_proposal_boxes[i])
assert proposals[i].image_size == (image_sizes[i][0], image_sizes[i][1])
# It seems that there's some randomness in the result across different machines:
# This test can be run on a local machine for 100 times with exactly the same result,
# However, a different machine might produce slightly different results,
# thus the atol here.
err_msg = "computed proposal boxes = {}, expected {}".format(
proposals[i].proposal_boxes.tensor, expected_proposal_boxes[i].tensor
)
assert torch.allclose(
proposals[i].proposal_boxes.tensor, expected_proposal_boxes[i].tensor, atol=1e-5
), err_msg
err_msg = "computed objectness logits = {}, expected {}".format(
proposals[i].objectness_logits, expected_objectness_logits[i]
)
assert torch.allclose(
proposals[i].objectness_logits, expected_objectness_logits[i], atol=1e-5
), err_msg
if __name__ == "__main__":
unittest.main()