-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathcAffinityPropagation.cls
358 lines (300 loc) · 9.48 KB
/
cAffinityPropagation.cls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
VERSION 1.0 CLASS
BEGIN
MultiUse = -1 'True
END
Attribute VB_Name = "cAffinityPropagation"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = False
Option Explicit
Private pExemplar() As Long 'List of exemplars
Private pExemplar_num As Long 'Number of exemplars
Private pExemplar_index() As Long 'The exemplar that each member maps to
Private pconvergence_chk() As Double
Private pNet_Similarity As Double
Private pExemplar_pref As Double
Private pdata_to_exemplar_similarities As Double
Sub Reset()
Erase pExemplar, pExemplar_index, pconvergence_chk
End Sub
Public Property Get Exemplars() As Long()
Exemplars = pExemplar
End Property
Public Property Get Exemplar_num() As Long
Exemplar_num = pExemplar_num
End Property
Public Property Get Exemplar_index() As Long()
Exemplar_index = pExemplar_index
End Property
Public Property Get converge_chk() As Double()
converge_chk = pconvergence_chk
End Property
Public Property Get Net_Similarity() As Double
Net_Similarity = pNet_Similarity
End Property
Public Property Get Exemplar_pref() As Double
Exemplar_pref = pExemplar_pref
End Property
Public Property Get data_to_exemplar_similarities() As Double
data_to_exemplar_similarities = pdata_to_exemplar_similarities
End Property
'Input: S(), N x N similarity matrix, not necessarily symmetric,
' diagonals should either be 0 or be weights for preferences
'Preference input can be: MAX, MIN, MEDIAN or INPUT
Sub Affinity_Propagation(S_in() As Double, _
Optional damping As Double = 0.5, _
Optional iterate_max As Long = 500, _
Optional convit As Long = 30, _
Optional input_pref As String = "MEDIAN")
Dim i As Long, j As Long, m As Long, n As Long, k As Long
Dim iterate As Long, converge_count As Long
Dim n_raw As Long
Dim tmp_x As Double, tmp_y As Double
Dim temp As Double, temp_max As Double, temp_min As Double
Dim s() As Double
Dim S_Median As Double, s_min As Double, s_max As Double
Dim r() As Double, A() As Double, R_old() As Double, A_Old() As Double
Dim AnS() As Double, AnS_Max() As Double, AnS_Max_Index() As Long
Dim Rp() As Double, Rp_sum() As Double
Dim e() As Double
Dim Exemplar_index_old() As Long
Dim tmp_vec() As Double
s = S_in
input_pref = UCase(input_pref)
n_raw = UBound(s, 1)
ReDim pExemplar(1 To n_raw)
ReDim pExemplar_index(1 To n_raw)
ReDim Exemplar_index_old(1 To n_raw)
ReDim pconvergence_chk(1 To 3, 1 To iterate_max)
ReDim r(1 To n_raw, 1 To n_raw)
ReDim Rp(1 To n_raw, 1 To n_raw)
ReDim Rp_sum(1 To n_raw)
ReDim A(1 To n_raw, 1 To n_raw)
ReDim AnS(1 To n_raw, 1 To n_raw)
ReDim AnS_Max(1 To n_raw, 1 To 2)
ReDim AnS_Max_Index(1 To n_raw, 1 To 2)
ReDim e(1 To n_raw, 1 To n_raw)
'=== Assign Preference
'Find median, min, max of S(i,k) s.t. i<>k
Application.StatusBar = "Affinity: assigning preferences..."
n = 0
ReDim tmp_vec(1 To n_raw * (n_raw - 1))
For i = 1 To n_raw - 1
For k = i + 1 To n_raw
n = n + 1
tmp_vec(n) = s(i, k)
n = n + 1
tmp_vec(n) = s(k, i)
Next k
Next i
Call Find_Med_Min_Max(tmp_vec, S_Median, s_min, s_max)
If input_pref = "MEDIAN" Then
For i = 1 To n_raw
s(i, i) = S_Median
Next i
ElseIf input_pref = "MAX" Then
For i = 1 To n_raw
s(i, i) = s_max
Next i
ElseIf input_pref = "MIN" Then
For i = 1 To n_raw
s(i, i) = s_min
Next i
ElseIf input_pref = "INPUT" Then
ReDim tmp_vec(1 To n_raw)
For i = 1 To n_raw
tmp_vec(i) = s(i, i)
Next i
Call Find_Med_Min_Max(tmp_vec, temp, temp_min, temp_max)
For i = 1 To n_raw
s(i, i) = s_min + (s_max - s_min) * (s(i, i) - temp_min) / (temp_max - temp_min)
Next i
Else
msgbox input_pref & " is not a valid input"
End If
'====================================================
'=== Add Random Noise
For i = 1 To n_raw
Randomize
For k = 1 To n_raw
s(i, k) = s(i, k) + 0.000000000001 * Rnd * (s_max - s_min)
Next k
Next i
'====================================================
converge_count = 0
For iterate = 1 To iterate_max
DoEvents
If iterate Mod 10 = 0 Then Application.StatusBar = "Affinity: Iterate: " & iterate & "/" & iterate_max
'=== Compute responsibilities
R_old = r
For i = 1 To n_raw
For k = 1 To n_raw
AnS(i, k) = A(i, k) + s(i, k)
Next k
Next i
For i = 1 To n_raw
'Largest element on the i-th row
tmp_x = -999999999
For k = 1 To n_raw
If AnS(i, k) > AnS_Max(i, 1) Then
tmp_x = AnS(i, k)
j = k
End If
AnS_Max(i, 1) = tmp_x
AnS_Max_Index(i, 1) = j
Next k
'2nd Largest element on the i-th row
tmp_x = -999999999
tmp_y = AnS_Max(i, 1)
m = AnS_Max_Index(i, 1)
For k = 1 To n_raw
If AnS(i, k) > tmp_x And AnS(i, k) <= tmp_y And k <> m Then
tmp_x = AnS(i, k)
j = k
End If
AnS_Max(i, 2) = tmp_x
AnS_Max_Index(i, 2) = j
Next k
Next i
For i = 1 To n_raw
For k = 1 To n_raw
If AnS_Max_Index(i, 1) <> k Then
r(i, k) = s(i, k) - AnS_Max(i, 1)
ElseIf AnS_Max_Index(i, 1) = k Then
r(i, k) = s(i, k) - AnS_Max(i, 2)
End If
Next k
Next i
For i = 1 To n_raw
For k = 1 To n_raw
r(i, k) = (1 - damping) * r(i, k) + damping * R_old(i, k)
Next k
Next i
'======================================
'=== Compute availabilities
A_Old = A
For i = 1 To n_raw
For k = 1 To n_raw
Rp(i, k) = 0
If r(i, k) > 0 Then Rp(i, k) = r(i, k)
Next k
Next i
For k = 1 To n_raw
Rp_sum(k) = 0
For i = 1 To n_raw
If i <> k Then Rp_sum(k) = Rp_sum(k) + Rp(i, k)
Next i
Next k
For i = 1 To n_raw
For k = 1 To n_raw
If i <> k Then
A(i, k) = r(k, k) + Rp_sum(k) - Rp(i, k)
If A(i, k) > 0 Then A(i, k) = 0
End If
Next k
Next i
For k = 1 To n_raw
A(k, k) = Rp_sum(k)
Next k
For i = 1 To n_raw
For j = 1 To n_raw
A(i, j) = (1 - damping) * A(i, j) + damping * A_Old(i, j)
Next j
Next i
'======================================
'=== Exemplar in current iteration
For i = 1 To n_raw
For k = 1 To n_raw
e(i, k) = r(i, k) + A(i, k)
Next k
Next i
Exemplar_index_old = pExemplar_index
ReDim pExemplar(1 To n_raw)
ReDim pExemplar_index(1 To n_raw)
For i = 1 To n_raw
temp_max = -999999
For k = 1 To n_raw
If e(i, k) > temp_max Then
temp_max = e(i, k)
pExemplar_index(i) = k
End If
Next k
Next i
pExemplar_num = 0
For i = 1 To n_raw
If pExemplar_index(i) = i Then
pExemplar_num = pExemplar_num + 1
pExemplar(pExemplar_num) = i
End If
Next i
If pExemplar_num > 0 Then ReDim Preserve pExemplar(1 To pExemplar_num)
pNet_Similarity = 0
For i = 1 To n_raw
pNet_Similarity = pNet_Similarity + s(i, pExemplar_index(i))
Next i
pconvergence_chk(1, iterate) = iterate
pconvergence_chk(2, iterate) = pExemplar_num
pconvergence_chk(3, iterate) = pNet_Similarity
'=== Check for convergence
n = 0
For i = 1 To n_raw
If pExemplar_index(i) = Exemplar_index_old(i) Then n = n + 1
Next i
If n = n_raw Then
converge_count = converge_count + 1
Else
converge_count = 0
End If
If converge_count = convit Then Exit For
'==================================
Next iterate
ReDim Preserve pconvergence_chk(1 To 3, 1 To iterate)
Erase A_Old, R_old, Rp, Rp_sum, AnS, AnS_Max, AnS_Max_Index, Exemplar_index_old
For i = 1 To n_raw
For k = 1 To n_raw
e(i, k) = r(i, k) + A(i, k)
Next k
Next i
ReDim pExemplar(1 To n_raw)
ReDim pExemplar_index(1 To n_raw)
For i = 1 To n_raw
temp_max = -999999
For k = 1 To n_raw
If e(i, k) > temp_max Then
temp_max = e(i, k)
pExemplar_index(i) = k
End If
Next k
Next i
pExemplar_num = 0
For i = 1 To n_raw
If pExemplar_index(i) = i Then
pExemplar_num = pExemplar_num + 1
pExemplar(pExemplar_num) = i
End If
Next i
ReDim Preserve pExemplar(1 To pExemplar_num)
pNet_Similarity = 0
For i = 1 To n_raw
pNet_Similarity = pNet_Similarity + s(i, pExemplar_index(i))
Next i
pExemplar_pref = 0
For k = 1 To pExemplar_num
pExemplar_pref = pExemplar_pref + s(pExemplar(k), pExemplar(k))
Next k
pdata_to_exemplar_similarities = pNet_Similarity - pExemplar_pref
Application.StatusBar = False
End Sub
Private Sub Find_Med_Min_Max(x() As Double, x_med As Double, x_min As Double, x_max As Double)
Dim n As Long
n = UBound(x)
Call modMath.Sort_Quick(x, 1, n)
x_min = x(1)
x_max = x(n)
If n Mod 2 = 1 Then
x_med = x((n + 1) / 2)
ElseIf n Mod 2 = 0 Then
x_med = (x(n / 2) + x(n / 2 + 1)) / 2
End If
End Sub