-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_network_DDP.py
299 lines (260 loc) · 11.2 KB
/
train_network_DDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""Script used to train a MIME."""
import argparse
import logging
import os
import sys
from termcolor import colored
import numpy as np
import torch
import time
PREFETCH_DATALOADER = False # ! Warning: this leads to generate many multiple threads for cpu recursively.
if PREFETCH_DATALOADER:
from torch.utils.data import DataLoader
from prefetch_generator import BackgroundGenerator
from torch.utils.data import DataLoader as Ori_DataLoader
class DataLoader(Ori_DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
else:
from torch.utils.data import DataLoader
from training_utils import (id_generator, save_experiment_params, \
load_config, yield_forever, load_checkpoints, save_checkpoints, synchronize)
from scene_synthesis.datasets import get_encoded_dataset, filter_function
from scene_synthesis.networks import build_network, optimizer_factory
from scene_synthesis.stats_logger import StatsLogger, WandB
from main_utils import train_get_parser
import torch.nn as nn
def main(argv):
args = train_get_parser(argv)
is_distributed = args.ngpu > 1 and args.distributed
if is_distributed:
print('start distributed ************\n')
local_rank = 0
torch.cuda.set_device(local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
# Disable trimesh's logger
logging.getLogger("trimesh").setLevel(logging.ERROR)
# Set the random seed
np.random.seed(args.seed)
torch.manual_seed(np.random.randint(np.iinfo(np.int32).max))
if torch.cuda.is_available():
torch.cuda.manual_seed_all(np.random.randint(np.iinfo(np.int32).max))
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
print("Running code on", device)
# Check if output directory exists and if it doesn't create it
if not os.path.exists(args.output_directory):
os.makedirs(args.output_directory)
# Create an experiment directory using the experiment_tag
if args.experiment_tag is None:
experiment_tag = id_generator(9)
else:
experiment_tag = args.experiment_tag
experiment_directory = os.path.join(
args.output_directory,
experiment_tag
)
if not os.path.exists(experiment_directory):
os.makedirs(experiment_directory)
if (not is_distributed) or (dist.get_rank() == 0): # ! create dir, save data, or print
# Save the parameters of this run to a file
save_experiment_params(args, experiment_tag, experiment_directory)
print("Save experiment statistics in {}".format(experiment_directory))
# Parse the config file
config = load_config(args.config_file)
train_dataset = get_encoded_dataset(
config["data"],
filter_function(
config["data"],
split=config["training"].get("splits", ["train", "val"])
),
path_to_bounds=None,
augmentations=config["data"].get("augmentations", None),
split=config["training"].get("splits", ["train", "val"])
)
# Compute the bounds for this experiment, save them to a file in the
# experiment directory and pass them to the validation dataset
path_to_bounds = os.path.join(experiment_directory, "bounds.npz")
print("Saved the dataset bounds in {}".format(path_to_bounds))
if (not is_distributed) or (dist.get_rank() == 0): # ! create dir, save data, or print
np.savez(
path_to_bounds,
sizes=train_dataset.bounds["sizes"],
translations=train_dataset.bounds["translations"],
angles=train_dataset.bounds["angles"]
)
validation_dataset = get_encoded_dataset(
config["data"],
filter_function(
config["data"],
split=config["validation"].get("splits", ["test"])
),
path_to_bounds=path_to_bounds,
augmentations=None,
split=config["validation"].get("splits", ["test"])
)
print("Loaded {} training scenes with {} object types".format(
len(train_dataset), train_dataset.n_object_types)
)
# print("Training set has {} bounds".format(train_dataset.bounds))
print("Loaded {} validation scenes with {} object types".format(
len(validation_dataset), validation_dataset.n_object_types)
)
### convert data loader to dist
if is_distributed:
train_sampler = torch.utils.data.DistributedSampler(train_dataset,
num_replicas=dist.get_world_size(),
rank=dist.get_rank(),
shuffle=True)
val_sampler = torch.utils.data.DistributedSampler(validation_dataset,
num_replicas=dist.get_world_size(),
rank=dist.get_rank(),
shuffle=False)
train_loader = DataLoader(
train_dataset,
batch_size=config["training"].get("batch_size", 128),
sampler=train_sampler,
num_workers=args.n_processes,
collate_fn=train_dataset.collate_fn,
drop_last=True,
pin_memory=True
)
val_loader = DataLoader(
validation_dataset,
batch_size=config["validation"].get("batch_size", 1),
sampler=val_sampler,
num_workers=args.n_processes,
collate_fn=validation_dataset.collate_fn,
drop_last=True,
pin_memory=True
)
else:
train_loader = DataLoader(
train_dataset,
batch_size=config["training"].get("batch_size", 128),
num_workers=args.n_processes,
collate_fn=train_dataset.collate_fn,
shuffle=True
)
val_loader = DataLoader(
validation_dataset,
batch_size=config["validation"].get("batch_size", 1),
num_workers=args.n_processes,
collate_fn=validation_dataset.collate_fn,
shuffle=False
)
# Make sure that the train_dataset and the validation_dataset have the same
# number of object categories
assert train_dataset.object_types == validation_dataset.object_types
# Build the network architecture to be used for training
network, train_on_batch, validate_on_batch = build_network(
train_dataset.feature_size, train_dataset.n_classes,
config, args.weight_file, args.weight_strict, device=device
)
# Build an optimizer object to compute the gradients of the parameters
optimizer = optimizer_factory(config["training"], network.parameters())
# Load the checkpoints if they exist in the experiment directory
load_checkpoints(network, optimizer, args.load_ckpt_dir, args, device)
### convert model to dist
if is_distributed:
print("Dist Train, Let's use", torch.cuda.device_count(), "GPUs!")
network = torch.nn.parallel.DistributedDataParallel(
network, device_ids=[local_rank], output_device=local_rank,
# find_unused_parameters=False,
# this should be removed if we update BatchNorm stats
# broadcast_buffers=False,
)
elif args.ngpu > 1:
if torch.cuda.is_available():
print("Let's use", torch.cuda.device_count(), "GPUs!")
network = nn.DataParallel(network)
if (not is_distributed) or (dist.get_rank() == 0):
if args.with_wandb_logger:
os.environ["WANDB_API_KEY"] = '957dd25a6e0eb03475e640789ecc6c0ab95745c8'
os.environ["WANDB_MODE"] = "offline"
WandB.instance().init(
config,
model=network,
project=config["logger"].get(
"project", "autoregressive_transformer"
),
name=experiment_tag,
watch=False,
log_frequency=10
)
# Log the stats to a file
StatsLogger.instance().add_output_file(open(
os.path.join(experiment_directory, "stats.txt"),
"w"
))
epochs = config["training"].get("epochs", 150)
steps_per_epoch = config["training"].get("steps_per_epoch", 500)
save_every = config["training"].get("save_frequency", 10)
val_every = config["validation"].get("frequency", 100)
# Do the training
best_val_loss = 1e10
for i in range(args.continue_from_epoch, epochs):
network.train()
train_cost_time = 0
data_time_epoch = 0
data_start_time = time.time()
for b, sample in zip(range(steps_per_epoch), yield_forever(train_loader)):
# Move everything to device
for k, v in sample.items():
sample[k] = v.to(device)
start_time = time.time()
data_cost_time = start_time-data_start_time
data_time_epoch += data_cost_time
# add dataset normalization information during training.
batch_loss = train_on_batch(network, optimizer, sample, config, train_dataset)
cost_time = time.time() - start_time
train_cost_time += cost_time
data_start_time = time.time()
if (not is_distributed) or (dist.get_rank() == 0):
StatsLogger.instance().print_progress(i+1, b+1, batch_loss, {'inference':cost_time, 'data':data_cost_time})
if (not is_distributed) or (dist.get_rank() == 0):
if (i % save_every) == 0:
tmp_flag = args.ngpu > 1
save_checkpoints(
i,
network,
optimizer,
experiment_directory,
is_distributed=tmp_flag,
)
StatsLogger.instance().clear()
if i % val_every == 0 and i > 0:
if (not is_distributed) or (dist.get_rank() == 0):
print("====> Validation Epoch ====>")
network.eval()
for b, sample in enumerate(val_loader):
# Move everything to device
for k, v in sample.items():
sample[k] = v.to(device)
batch_loss = validate_on_batch(network, sample, config)
if (not is_distributed) or (dist.get_rank() == 0):
StatsLogger.instance().print_progress(-1, b+1, batch_loss)
if batch_loss < best_val_loss:
best_val_loss = batch_loss
if args.ngpu > 1:
save_state = network.module.state_dict()
else:
save_state = network.state_dict()
torch.save(
save_state,
os.path.join(experiment_directory, "model_best").format(i)
)
torch.save(
optimizer.state_dict(),
os.path.join(experiment_directory, "opt_best").format(i)
)
if (not is_distributed) or (dist.get_rank() == 0):
StatsLogger.instance().clear()
print("====> Validation Epoch ====>")
if __name__ == "__main__":
main(sys.argv[1:])