forked from facebookresearch/sam2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
build_sam.py
127 lines (108 loc) · 4.64 KB
/
build_sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import torch
from hydra import compose
from hydra.utils import instantiate
from omegaconf import OmegaConf
def build_sam2(
config_file,
ckpt_path=None,
device="cuda",
mode="eval",
hydra_overrides_extra=[],
apply_postprocessing=True,
):
if apply_postprocessing:
hydra_overrides_extra = hydra_overrides_extra.copy()
hydra_overrides_extra += [
# dynamically fall back to multi-mask if the single mask is not stable
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
]
# Read config and init model
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
OmegaConf.resolve(cfg)
model = instantiate(cfg.model, _recursive_=True)
_load_checkpoint(model, ckpt_path)
model = model.to(device)
if mode == "eval":
model.eval()
return model
def build_sam2_video_predictor(
config_file,
ckpt_path=None,
device="cuda",
mode="eval",
hydra_overrides_extra=[],
apply_postprocessing=True,
):
hydra_overrides = [
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
]
if apply_postprocessing:
hydra_overrides_extra = hydra_overrides_extra.copy()
hydra_overrides_extra += [
# dynamically fall back to multi-mask if the single mask is not stable
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
"++model.binarize_mask_from_pts_for_mem_enc=true",
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
"++model.fill_hole_area=8",
]
hydra_overrides.extend(hydra_overrides_extra)
# Read config and init model
cfg = compose(config_name=config_file, overrides=hydra_overrides)
OmegaConf.resolve(cfg)
model = instantiate(cfg.model, _recursive_=True)
_load_checkpoint(model, ckpt_path)
model = model.to(device)
if mode == "eval":
model.eval()
return model
def build_sam2_hf(model_id, **kwargs):
from huggingface_hub import hf_hub_download
model_id_to_filenames = {
"facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
"facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
"facebook/sam2-hiera-base-plus": (
"sam2_hiera_b+.yaml",
"sam2_hiera_base_plus.pt",
),
"facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
}
config_name, checkpoint_name = model_id_to_filenames[model_id]
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
def build_sam2_video_predictor_hf(model_id, **kwargs):
from huggingface_hub import hf_hub_download
model_id_to_filenames = {
"facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
"facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
"facebook/sam2-hiera-base-plus": (
"sam2_hiera_b+.yaml",
"sam2_hiera_base_plus.pt",
),
"facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
}
config_name, checkpoint_name = model_id_to_filenames[model_id]
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
return build_sam2_video_predictor(
config_file=config_name, ckpt_path=ckpt_path, **kwargs
)
def _load_checkpoint(model, ckpt_path):
if ckpt_path is not None:
sd = torch.load(ckpt_path, map_location="cpu")["model"]
missing_keys, unexpected_keys = model.load_state_dict(sd)
if missing_keys:
logging.error(missing_keys)
raise RuntimeError()
if unexpected_keys:
logging.error(unexpected_keys)
raise RuntimeError()
logging.info("Loaded checkpoint sucessfully")