forked from allenai/open-instruct
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_train_data.sh
executable file
·103 lines (68 loc) · 5.81 KB
/
prepare_train_data.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# check if there is $HF_TOKEN in the environment variables
if [ -z "$HF_TOKEN" ]
then
echo "Warning: HuggingFace dataset LIMA requires permissive access."
echo "Warning: Please request the access at https://huggingface.co/datasets/GAIR/lima and set the HF_TOKEN environment variable before running this script."
exit 1
fi
echo "Downloading Super-NaturalInstructions dataset..."
wget -P data/raw_train/super_ni/ https://github.com/allenai/natural-instructions/archive/refs/heads/master.zip
unzip data/raw_train/super_ni/master.zip -d data/raw_train/super_ni/ && rm data/raw_train/super_ni/master.zip
mv data/raw_train/super_ni/natural-instructions-master/* data/raw_train/super_ni/ && rm -r data/raw_train/super_ni/natural-instructions-master
echo "Downloading the flan_v2 chain-of-thought submix..."
wget -P data/raw_train/cot/ https://beaker.org/api/v3/datasets/01GXZ52K2Q932H6KZY499A7FE8/files/cot_zsopt.jsonl
wget -P data/raw_train/cot/ https://beaker.org/api/v3/datasets/01GXZ51ZV283RAZW7J3ECM4S58/files/cot_fsopt.jsonl
echo "Downloading the flan_v2 collection, here we use two subsampled versions: for tulu v1 we subsampled 100K, for tulu v2 we subsampled 50K..."
mkdir -p data/raw_train/flan_v2/
wget -O data/raw_train/flan_v2/tulu_v1_resampled_flan_100k.jsonl https://beaker.org/api/v3/datasets/01GZTTS2EJFPA83PXS4FQCS1SA/files/flan_v2_resampled_100k.jsonl
wget -O data/raw_train/flan_v2/tulu_v2_resampled_flan_50k.jsonl https://beaker.org/api/v3/datasets/01HBS0N5ZSDF5AECA9VMB1RKXQ/files/flan_v2_resampled_50k.jsonl
echo "Downloading self-instruct data..."
wget -P data/raw_train/self_instruct/ https://raw.githubusercontent.com/yizhongw/self-instruct/main/data/gpt3_generations/batch_221203/all_instances_82K.jsonl
echo "Downloading unnatural-instructions data..."
wget -P data/raw_train/unnatural_instructions/ https://github.com/orhonovich/unnatural-instructions/raw/main/data/core_data.zip
unzip data/raw_train/unnatural_instructions/core_data.zip -d data/raw_train/unnatural_instructions/
echo "Downloading Stanford alpaca data..."
wget -P data/raw_train/stanford_alpaca/ https://github.com/tatsu-lab/stanford_alpaca/raw/main/alpaca_data.json
echo "Downloading the dolly dataset..."
wget -P data/raw_train/dolly/ https://huggingface.co/datasets/databricks/databricks-dolly-15k/resolve/main/databricks-dolly-15k.jsonl
echo "Downloading the OpenAssistant data (oasst1)..."
wget -P data/raw_train/oasst1/ https://huggingface.co/datasets/OpenAssistant/oasst1/resolve/main/2023-04-12_oasst_ready.trees.jsonl.gz
gzip -d data/raw_train/oasst1/2023-04-12_oasst_ready.trees.jsonl.gz
echo "Downloading the code alpaca dataset..."
wget -P data/raw_train/code_alpaca/ https://github.com/sahil280114/codealpaca/raw/master/data/code_alpaca_20k.json
echo "Downloading the gpt4-llm dataset..."
wget -P data/raw_train/gpt4_alpaca/ https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/raw/main/data/alpaca_gpt4_data.json
wget -P data/raw_train/gpt4_alpaca/ https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/raw/main/data/alpaca_gpt4_data_zh.json
echo "Downloading the baize dataset..."
wget -P data/raw_train/baize/ https://github.com/project-baize/baize-chatbot/raw/main/data/alpaca_chat_data.json
wget -P data/raw_train/baize/ https://github.com/project-baize/baize-chatbot/raw/main/data/medical_chat_data.json
wget -P data/raw_train/baize/ https://github.com/project-baize/baize-chatbot/raw/main/data/quora_chat_data.json
wget -P data/raw_train/baize/ https://github.com/project-baize/baize-chatbot/raw/main/data/stackoverflow_chat_data.json
echo "Downloading ShareGPT dataset..."
wget -P data/raw_train/sharegpt/ https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/HTML_cleaned_raw_dataset/sg_90k_part1_html_cleaned.json
wget -P data/raw_train/sharegpt/ https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/HTML_cleaned_raw_dataset/sg_90k_part2_html_cleaned.json
echo "Splitting the ShareGPT dataset with 2048 max tokens per conversation..."
python scripts/split_sharegpt_conversations.py \
--in-files data/raw_train/sharegpt/sg_90k_part1_html_cleaned.json data/raw_train/sharegpt/sg_90k_part2_html_cleaned.json \
--out-file data/raw_train/sharegpt/sharegpt_html_cleaned_and_split_2048.json \
--model-name-or-path ../hf_llama_models/7B/ \
--max-length 2048
echo "Splitting the ShareGPT dataset with 4096 max tokens per conversation..."
python scripts/split_sharegpt_conversations.py \
--in-files data/raw_train/sharegpt/sg_90k_part1_html_cleaned.json data/raw_train/sharegpt/sg_90k_part2_html_cleaned.json \
--out-file data/raw_train/sharegpt/sharegpt_html_cleaned_and_split_4096.json \
--model-name-or-path ../hf_llama_models/7B/ \
--max-length 4096
echo "Downloading LIMA dataset..."
wget --header="Authorization: Bearer $HF_TOKEN" -P data/raw_train/lima/ https://huggingface.co/datasets/GAIR/lima/raw/main/train.jsonl
echo "Downloading WizardLM dataset..."
wget -P data/raw_train/wizardlm/ https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k/resolve/main/WizardLM_evol_instruct_V2_143k.json
echo "Downloading the OpenOrca dataset..."
wget -P data/raw_train/open_orca/ https://huggingface.co/datasets/Open-Orca/OpenOrca/resolve/main/1M-GPT4-Augmented.parquet
wget -P data/raw_train/open_orca/ https://huggingface.co/datasets/Open-Orca/OpenOrca/resolve/main/3_5M-GPT3_5-Augmented.parquet
echo "Downloading the Science Instructions dataset..."
wget -P data/raw_train/science https://beaker.org/api/v3/datasets/01HBS3G7TA8AT15C7RWTJAN66X/files/science_train.jsonl
echo "Downloading the HardCoded dataset..."
wget -P data/raw_train/hard_coded/ https://beaker.org/api/v3/datasets/01HBS14BBV16K45MMFSYJR86CA/files/hard_coded_examples.xlsx
echo "Processing datasets..."
python open_instruct/reformat_datasets.py --raw_data_dir data/raw_train/ --output_dir data/processed/