forked from prometheus/client_golang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistogram.go
1837 lines (1696 loc) · 73.8 KB
/
histogram.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"math"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
dto "github.com/prometheus/client_model/go"
"google.golang.org/protobuf/proto"
"google.golang.org/protobuf/types/known/timestamppb"
)
// nativeHistogramBounds for the frac of observed values. Only relevant for
// schema > 0. The position in the slice is the schema. (0 is never used, just
// here for convenience of using the schema directly as the index.)
//
// TODO(beorn7): Currently, we do a binary search into these slices. There are
// ways to turn it into a small number of simple array lookups. It probably only
// matters for schema 5 and beyond, but should be investigated. See this comment
// as a starting point:
// https://github.com/open-telemetry/opentelemetry-specification/issues/1776#issuecomment-870164310
var nativeHistogramBounds = [][]float64{
// Schema "0":
{0.5},
// Schema 1:
{0.5, 0.7071067811865475},
// Schema 2:
{0.5, 0.5946035575013605, 0.7071067811865475, 0.8408964152537144},
// Schema 3:
{
0.5, 0.5452538663326288, 0.5946035575013605, 0.6484197773255048,
0.7071067811865475, 0.7711054127039704, 0.8408964152537144, 0.9170040432046711,
},
// Schema 4:
{
0.5, 0.5221368912137069, 0.5452538663326288, 0.5693943173783458,
0.5946035575013605, 0.620928906036742, 0.6484197773255048, 0.6771277734684463,
0.7071067811865475, 0.7384130729697496, 0.7711054127039704, 0.805245165974627,
0.8408964152537144, 0.8781260801866495, 0.9170040432046711, 0.9576032806985735,
},
// Schema 5:
{
0.5, 0.5109485743270583, 0.5221368912137069, 0.5335702003384117,
0.5452538663326288, 0.5571933712979462, 0.5693943173783458, 0.5818624293887887,
0.5946035575013605, 0.6076236799902344, 0.620928906036742, 0.6345254785958666,
0.6484197773255048, 0.6626183215798706, 0.6771277734684463, 0.6919549409819159,
0.7071067811865475, 0.7225904034885232, 0.7384130729697496, 0.7545822137967112,
0.7711054127039704, 0.7879904225539431, 0.805245165974627, 0.8228777390769823,
0.8408964152537144, 0.8593096490612387, 0.8781260801866495, 0.8973545375015533,
0.9170040432046711, 0.9370838170551498, 0.9576032806985735, 0.9785720620876999,
},
// Schema 6:
{
0.5, 0.5054446430258502, 0.5109485743270583, 0.5165124395106142,
0.5221368912137069, 0.5278225891802786, 0.5335702003384117, 0.5393803988785598,
0.5452538663326288, 0.5511912916539204, 0.5571933712979462, 0.5632608093041209,
0.5693943173783458, 0.5755946149764913, 0.5818624293887887, 0.5881984958251406,
0.5946035575013605, 0.6010783657263515, 0.6076236799902344, 0.6142402680534349,
0.620928906036742, 0.6276903785123455, 0.6345254785958666, 0.6414350080393891,
0.6484197773255048, 0.6554806057623822, 0.6626183215798706, 0.6698337620266515,
0.6771277734684463, 0.6845012114872953, 0.6919549409819159, 0.6994898362691555,
0.7071067811865475, 0.7148066691959849, 0.7225904034885232, 0.7304588970903234,
0.7384130729697496, 0.7464538641456323, 0.7545822137967112, 0.762799075372269,
0.7711054127039704, 0.7795022001189185, 0.7879904225539431, 0.7965710756711334,
0.805245165974627, 0.8140137109286738, 0.8228777390769823, 0.8318382901633681,
0.8408964152537144, 0.8500531768592616, 0.8593096490612387, 0.8686669176368529,
0.8781260801866495, 0.8876882462632604, 0.8973545375015533, 0.9071260877501991,
0.9170040432046711, 0.9269895625416926, 0.9370838170551498, 0.9472879907934827,
0.9576032806985735, 0.9680308967461471, 0.9785720620876999, 0.9892280131939752,
},
// Schema 7:
{
0.5, 0.5027149505564014, 0.5054446430258502, 0.5081891574554764,
0.5109485743270583, 0.5137229745593818, 0.5165124395106142, 0.5193170509806894,
0.5221368912137069, 0.5249720429003435, 0.5278225891802786, 0.5306886136446309,
0.5335702003384117, 0.5364674337629877, 0.5393803988785598, 0.5423091811066545,
0.5452538663326288, 0.5482145409081883, 0.5511912916539204, 0.5541842058618393,
0.5571933712979462, 0.5602188762048033, 0.5632608093041209, 0.5663192597993595,
0.5693943173783458, 0.572486072215902, 0.5755946149764913, 0.5787200368168754,
0.5818624293887887, 0.585021884841625, 0.5881984958251406, 0.5913923554921704,
0.5946035575013605, 0.5978321960199137, 0.6010783657263515, 0.6043421618132907,
0.6076236799902344, 0.6109230164863786, 0.6142402680534349, 0.6175755319684665,
0.620928906036742, 0.6243004885946023, 0.6276903785123455, 0.6310986751971253,
0.6345254785958666, 0.637970889198196, 0.6414350080393891, 0.6449179367033329,
0.6484197773255048, 0.6519406325959679, 0.6554806057623822, 0.659039800633032,
0.6626183215798706, 0.6662162735415805, 0.6698337620266515, 0.6734708931164728,
0.6771277734684463, 0.6808045103191123, 0.6845012114872953, 0.688217985377265,
0.6919549409819159, 0.6957121878859629, 0.6994898362691555, 0.7032879969095076,
0.7071067811865475, 0.7109463010845827, 0.7148066691959849, 0.718687998724491,
0.7225904034885232, 0.7265139979245261, 0.7304588970903234, 0.7344252166684908,
0.7384130729697496, 0.7424225829363761, 0.7464538641456323, 0.7505070348132126,
0.7545822137967112, 0.7586795205991071, 0.762799075372269, 0.7669409989204777,
0.7711054127039704, 0.7752924388424999, 0.7795022001189185, 0.7837348199827764,
0.7879904225539431, 0.7922691326262467, 0.7965710756711334, 0.8008963778413465,
0.805245165974627, 0.8096175675974316, 0.8140137109286738, 0.8184337248834821,
0.8228777390769823, 0.8273458838280969, 0.8318382901633681, 0.8363550898207981,
0.8408964152537144, 0.8454623996346523, 0.8500531768592616, 0.8546688815502312,
0.8593096490612387, 0.8639756154809185, 0.8686669176368529, 0.8733836930995842,
0.8781260801866495, 0.8828942179666361, 0.8876882462632604, 0.8925083056594671,
0.8973545375015533, 0.9022270839033115, 0.9071260877501991, 0.9120516927035263,
0.9170040432046711, 0.9219832844793128, 0.9269895625416926, 0.9320230241988943,
0.9370838170551498, 0.9421720895161669, 0.9472879907934827, 0.9524316709088368,
0.9576032806985735, 0.9628029718180622, 0.9680308967461471, 0.9732872087896164,
0.9785720620876999, 0.9838856116165875, 0.9892280131939752, 0.9945994234836328,
},
// Schema 8:
{
0.5, 0.5013556375251013, 0.5027149505564014, 0.5040779490592088,
0.5054446430258502, 0.5068150424757447, 0.5081891574554764, 0.509566998038869,
0.5109485743270583, 0.5123338964485679, 0.5137229745593818, 0.5151158188430205,
0.5165124395106142, 0.5179128468009786, 0.5193170509806894, 0.520725062344158,
0.5221368912137069, 0.5235525479396449, 0.5249720429003435, 0.526395386502313,
0.5278225891802786, 0.5292536613972564, 0.5306886136446309, 0.5321274564422321,
0.5335702003384117, 0.5350168559101208, 0.5364674337629877, 0.5379219445313954,
0.5393803988785598, 0.5408428074966075, 0.5423091811066545, 0.5437795304588847,
0.5452538663326288, 0.5467321995364429, 0.5482145409081883, 0.549700901315111,
0.5511912916539204, 0.5526857228508706, 0.5541842058618393, 0.5556867516724088,
0.5571933712979462, 0.5587040757836845, 0.5602188762048033, 0.5617377836665098,
0.5632608093041209, 0.564787964283144, 0.5663192597993595, 0.5678547070789026,
0.5693943173783458, 0.5709381019847808, 0.572486072215902, 0.5740382394200894,
0.5755946149764913, 0.5771552102951081, 0.5787200368168754, 0.5802891060137493,
0.5818624293887887, 0.5834400184762408, 0.585021884841625, 0.5866080400818185,
0.5881984958251406, 0.5897932637314379, 0.5913923554921704, 0.5929957828304968,
0.5946035575013605, 0.5962156912915756, 0.5978321960199137, 0.5994530835371903,
0.6010783657263515, 0.6027080545025619, 0.6043421618132907, 0.6059806996384005,
0.6076236799902344, 0.6092711149137041, 0.6109230164863786, 0.6125793968185725,
0.6142402680534349, 0.6159056423670379, 0.6175755319684665, 0.6192499490999082,
0.620928906036742, 0.622612415087629, 0.6243004885946023, 0.6259931389331581,
0.6276903785123455, 0.6293922197748583, 0.6310986751971253, 0.6328097572894031,
0.6345254785958666, 0.6362458516947014, 0.637970889198196, 0.6397006037528346,
0.6414350080393891, 0.6431741147730128, 0.6449179367033329, 0.6466664866145447,
0.6484197773255048, 0.6501778216898253, 0.6519406325959679, 0.6537082229673385,
0.6554806057623822, 0.6572577939746774, 0.659039800633032, 0.6608266388015788,
0.6626183215798706, 0.6644148621029772, 0.6662162735415805, 0.6680225691020727,
0.6698337620266515, 0.6716498655934177, 0.6734708931164728, 0.6752968579460171,
0.6771277734684463, 0.6789636531064505, 0.6808045103191123, 0.6826503586020058,
0.6845012114872953, 0.6863570825438342, 0.688217985377265, 0.690083933630119,
0.6919549409819159, 0.6938310211492645, 0.6957121878859629, 0.6975984549830999,
0.6994898362691555, 0.7013863456101023, 0.7032879969095076, 0.7051948041086352,
0.7071067811865475, 0.7090239421602076, 0.7109463010845827, 0.7128738720527471,
0.7148066691959849, 0.7167447066838943, 0.718687998724491, 0.7206365595643126,
0.7225904034885232, 0.7245495448210174, 0.7265139979245261, 0.7284837772007218,
0.7304588970903234, 0.7324393720732029, 0.7344252166684908, 0.7364164454346837,
0.7384130729697496, 0.7404151139112358, 0.7424225829363761, 0.7444354947621984,
0.7464538641456323, 0.7484777058836176, 0.7505070348132126, 0.7525418658117031,
0.7545822137967112, 0.7566280937263048, 0.7586795205991071, 0.7607365094544071,
0.762799075372269, 0.7648672334736434, 0.7669409989204777, 0.7690203869158282,
0.7711054127039704, 0.7731960915705107, 0.7752924388424999, 0.7773944698885442,
0.7795022001189185, 0.7816156449856788, 0.7837348199827764, 0.7858597406461707,
0.7879904225539431, 0.7901268813264122, 0.7922691326262467, 0.7944171921585818,
0.7965710756711334, 0.7987307989543135, 0.8008963778413465, 0.8030678282083853,
0.805245165974627, 0.8074284071024302, 0.8096175675974316, 0.8118126635086642,
0.8140137109286738, 0.8162207259936375, 0.8184337248834821, 0.820652723822003,
0.8228777390769823, 0.8251087869603088, 0.8273458838280969, 0.8295890460808079,
0.8318382901633681, 0.8340936325652911, 0.8363550898207981, 0.8386226785089391,
0.8408964152537144, 0.8431763167241966, 0.8454623996346523, 0.8477546807446661,
0.8500531768592616, 0.8523579048290255, 0.8546688815502312, 0.8569861239649629,
0.8593096490612387, 0.8616394738731368, 0.8639756154809185, 0.8663180910111553,
0.8686669176368529, 0.871022112577578, 0.8733836930995842, 0.8757516765159389,
0.8781260801866495, 0.8805069215187917, 0.8828942179666361, 0.8852879870317771,
0.8876882462632604, 0.890095013257712, 0.8925083056594671, 0.8949281411607002,
0.8973545375015533, 0.8997875124702672, 0.9022270839033115, 0.9046732696855155,
0.9071260877501991, 0.909585556079304, 0.9120516927035263, 0.9145245157024483,
0.9170040432046711, 0.9194902933879467, 0.9219832844793128, 0.9244830347552253,
0.9269895625416926, 0.92950288621441, 0.9320230241988943, 0.9345499949706191,
0.9370838170551498, 0.93962450902828, 0.9421720895161669, 0.9447265771954693,
0.9472879907934827, 0.9498563490882775, 0.9524316709088368, 0.9550139751351947,
0.9576032806985735, 0.9601996065815236, 0.9628029718180622, 0.9654133954938133,
0.9680308967461471, 0.9706554947643201, 0.9732872087896164, 0.9759260581154889,
0.9785720620876999, 0.9812252401044634, 0.9838856116165875, 0.9865531961276168,
0.9892280131939752, 0.9919100824251095, 0.9945994234836328, 0.9972960560854698,
},
}
// The nativeHistogramBounds above can be generated with the code below.
//
// TODO(beorn7): It's tempting to actually use `go generate` to generate the
// code above. However, this could lead to slightly different numbers on
// different architectures. We still need to come to terms if we are fine with
// that, or if we might prefer to specify precise numbers in the standard.
//
// var nativeHistogramBounds [][]float64 = make([][]float64, 9)
//
// func init() {
// // Populate nativeHistogramBounds.
// numBuckets := 1
// for i := range nativeHistogramBounds {
// bounds := []float64{0.5}
// factor := math.Exp2(math.Exp2(float64(-i)))
// for j := 0; j < numBuckets-1; j++ {
// var bound float64
// if (j+1)%2 == 0 {
// // Use previously calculated value for increased precision.
// bound = nativeHistogramBounds[i-1][j/2+1]
// } else {
// bound = bounds[j] * factor
// }
// bounds = append(bounds, bound)
// }
// numBuckets *= 2
// nativeHistogramBounds[i] = bounds
// }
// }
// A Histogram counts individual observations from an event or sample stream in
// configurable static buckets (or in dynamic sparse buckets as part of the
// experimental Native Histograms, see below for more details). Similar to a
// Summary, it also provides a sum of observations and an observation count.
//
// On the Prometheus server, quantiles can be calculated from a Histogram using
// the histogram_quantile PromQL function.
//
// Note that Histograms, in contrast to Summaries, can be aggregated in PromQL
// (see the documentation for detailed procedures). However, Histograms require
// the user to pre-define suitable buckets, and they are in general less
// accurate. (Both problems are addressed by the experimental Native
// Histograms. To use them, configure a NativeHistogramBucketFactor in the
// HistogramOpts. They also require a Prometheus server v2.40+ with the
// corresponding feature flag enabled.)
//
// The Observe method of a Histogram has a very low performance overhead in
// comparison with the Observe method of a Summary.
//
// To create Histogram instances, use NewHistogram.
type Histogram interface {
Metric
Collector
// Observe adds a single observation to the histogram. Observations are
// usually positive or zero. Negative observations are accepted but
// prevent current versions of Prometheus from properly detecting
// counter resets in the sum of observations. (The experimental Native
// Histograms handle negative observations properly.) See
// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
// for details.
Observe(float64)
}
// bucketLabel is used for the label that defines the upper bound of a
// bucket of a histogram ("le" -> "less or equal").
const bucketLabel = "le"
// DefBuckets are the default Histogram buckets. The default buckets are
// tailored to broadly measure the response time (in seconds) of a network
// service. Most likely, however, you will be required to define buckets
// customized to your use case.
var DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
// DefNativeHistogramZeroThreshold is the default value for
// NativeHistogramZeroThreshold in the HistogramOpts.
//
// The value is 2^-128 (or 0.5*2^-127 in the actual IEEE 754 representation),
// which is a bucket boundary at all possible resolutions.
const DefNativeHistogramZeroThreshold = 2.938735877055719e-39
// NativeHistogramZeroThresholdZero can be used as NativeHistogramZeroThreshold
// in the HistogramOpts to create a zero bucket of width zero, i.e. a zero
// bucket that only receives observations of precisely zero.
const NativeHistogramZeroThresholdZero = -1
var errBucketLabelNotAllowed = fmt.Errorf(
"%q is not allowed as label name in histograms", bucketLabel,
)
// LinearBuckets creates 'count' regular buckets, each 'width' wide, where the
// lowest bucket has an upper bound of 'start'. The final +Inf bucket is not
// counted and not included in the returned slice. The returned slice is meant
// to be used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is zero or negative.
func LinearBuckets(start, width float64, count int) []float64 {
if count < 1 {
panic("LinearBuckets needs a positive count")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start += width
}
return buckets
}
// ExponentialBuckets creates 'count' regular buckets, where the lowest bucket
// has an upper bound of 'start' and each following bucket's upper bound is
// 'factor' times the previous bucket's upper bound. The final +Inf bucket is
// not counted and not included in the returned slice. The returned slice is
// meant to be used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'start' is 0 or negative,
// or if 'factor' is less than or equal 1.
func ExponentialBuckets(start, factor float64, count int) []float64 {
if count < 1 {
panic("ExponentialBuckets needs a positive count")
}
if start <= 0 {
panic("ExponentialBuckets needs a positive start value")
}
if factor <= 1 {
panic("ExponentialBuckets needs a factor greater than 1")
}
buckets := make([]float64, count)
for i := range buckets {
buckets[i] = start
start *= factor
}
return buckets
}
// ExponentialBucketsRange creates 'count' buckets, where the lowest bucket is
// 'min' and the highest bucket is 'max'. The final +Inf bucket is not counted
// and not included in the returned slice. The returned slice is meant to be
// used for the Buckets field of HistogramOpts.
//
// The function panics if 'count' is 0 or negative, if 'min' is 0 or negative.
func ExponentialBucketsRange(minBucket, maxBucket float64, count int) []float64 {
if count < 1 {
panic("ExponentialBucketsRange count needs a positive count")
}
if minBucket <= 0 {
panic("ExponentialBucketsRange min needs to be greater than 0")
}
// Formula for exponential buckets.
// max = min*growthFactor^(bucketCount-1)
// We know max/min and highest bucket. Solve for growthFactor.
growthFactor := math.Pow(maxBucket/minBucket, 1.0/float64(count-1))
// Now that we know growthFactor, solve for each bucket.
buckets := make([]float64, count)
for i := 1; i <= count; i++ {
buckets[i-1] = minBucket * math.Pow(growthFactor, float64(i-1))
}
return buckets
}
// HistogramOpts bundles the options for creating a Histogram metric. It is
// mandatory to set Name to a non-empty string. All other fields are optional
// and can safely be left at their zero value, although it is strongly
// encouraged to set a Help string.
type HistogramOpts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Histogram (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the Histogram must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this Histogram.
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this metric. Metrics
// with the same fully-qualified name must have the same label names in
// their ConstLabels.
//
// ConstLabels are only used rarely. In particular, do not use them to
// attach the same labels to all your metrics. Those use cases are
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
ConstLabels Labels
// Buckets defines the buckets into which observations are counted. Each
// element in the slice is the upper inclusive bound of a bucket. The
// values must be sorted in strictly increasing order. There is no need
// to add a highest bucket with +Inf bound, it will be added
// implicitly. If Buckets is left as nil or set to a slice of length
// zero, it is replaced by default buckets. The default buckets are
// DefBuckets if no buckets for a native histogram (see below) are used,
// otherwise the default is no buckets. (In other words, if you want to
// use both regular buckets and buckets for a native histogram, you have
// to define the regular buckets here explicitly.)
Buckets []float64
// If NativeHistogramBucketFactor is greater than one, so-called sparse
// buckets are used (in addition to the regular buckets, if defined
// above). A Histogram with sparse buckets will be ingested as a Native
// Histogram by a Prometheus server with that feature enabled (requires
// Prometheus v2.40+). Sparse buckets are exponential buckets covering
// the whole float64 range (with the exception of the “zero” bucket, see
// NativeHistogramZeroThreshold below). From any one bucket to the next,
// the width of the bucket grows by a constant
// factor. NativeHistogramBucketFactor provides an upper bound for this
// factor (exception see below). The smaller
// NativeHistogramBucketFactor, the more buckets will be used and thus
// the more costly the histogram will become. A generally good trade-off
// between cost and accuracy is a value of 1.1 (each bucket is at most
// 10% wider than the previous one), which will result in each power of
// two divided into 8 buckets (e.g. there will be 8 buckets between 1
// and 2, same as between 2 and 4, and 4 and 8, etc.).
//
// Details about the actually used factor: The factor is calculated as
// 2^(2^-n), where n is an integer number between (and including) -4 and
// 8. n is chosen so that the resulting factor is the largest that is
// still smaller or equal to NativeHistogramBucketFactor. Note that the
// smallest possible factor is therefore approx. 1.00271 (i.e. 2^(2^-8)
// ). If NativeHistogramBucketFactor is greater than 1 but smaller than
// 2^(2^-8), then the actually used factor is still 2^(2^-8) even though
// it is larger than the provided NativeHistogramBucketFactor.
//
// NOTE: Native Histograms are still an experimental feature. Their
// behavior might still change without a major version
// bump. Subsequently, all NativeHistogram... options here might still
// change their behavior or name (or might completely disappear) without
// a major version bump.
NativeHistogramBucketFactor float64
// All observations with an absolute value of less or equal
// NativeHistogramZeroThreshold are accumulated into a “zero” bucket.
// For best results, this should be close to a bucket boundary. This is
// usually the case if picking a power of two. If
// NativeHistogramZeroThreshold is left at zero,
// DefNativeHistogramZeroThreshold is used as the threshold. To
// configure a zero bucket with an actual threshold of zero (i.e. only
// observations of precisely zero will go into the zero bucket), set
// NativeHistogramZeroThreshold to the NativeHistogramZeroThresholdZero
// constant (or any negative float value).
NativeHistogramZeroThreshold float64
// The next three fields define a strategy to limit the number of
// populated sparse buckets. If NativeHistogramMaxBucketNumber is left
// at zero, the number of buckets is not limited. (Note that this might
// lead to unbounded memory consumption if the values observed by the
// Histogram are sufficiently wide-spread. In particular, this could be
// used as a DoS attack vector. Where the observed values depend on
// external inputs, it is highly recommended to set a
// NativeHistogramMaxBucketNumber.) Once the set
// NativeHistogramMaxBucketNumber is exceeded, the following strategy is
// enacted:
// - First, if the last reset (or the creation) of the histogram is at
// least NativeHistogramMinResetDuration ago, then the whole
// histogram is reset to its initial state (including regular
// buckets).
// - If less time has passed, or if NativeHistogramMinResetDuration is
// zero, no reset is performed. Instead, the zero threshold is
// increased sufficiently to reduce the number of buckets to or below
// NativeHistogramMaxBucketNumber, but not to more than
// NativeHistogramMaxZeroThreshold. Thus, if
// NativeHistogramMaxZeroThreshold is already at or below the current
// zero threshold, nothing happens at this step.
// - After that, if the number of buckets still exceeds
// NativeHistogramMaxBucketNumber, the resolution of the histogram is
// reduced by doubling the width of the sparse buckets (up to a
// growth factor between one bucket to the next of 2^(2^4) = 65536,
// see above).
// - Any increased zero threshold or reduced resolution is reset back
// to their original values once NativeHistogramMinResetDuration has
// passed (since the last reset or the creation of the histogram).
NativeHistogramMaxBucketNumber uint32
NativeHistogramMinResetDuration time.Duration
NativeHistogramMaxZeroThreshold float64
// NativeHistogramMaxExemplars limits the number of exemplars
// that are kept in memory for each native histogram. If you leave it at
// zero, a default value of 10 is used. If no exemplars should be kept specifically
// for native histograms, set it to a negative value. (Scrapers can
// still use the exemplars exposed for classic buckets, which are managed
// independently.)
NativeHistogramMaxExemplars int
// NativeHistogramExemplarTTL is only checked once
// NativeHistogramMaxExemplars is exceeded. In that case, the
// oldest exemplar is removed if it is older than NativeHistogramExemplarTTL.
// Otherwise, the older exemplar in the pair of exemplars that are closest
// together (on an exponential scale) is removed.
// If NativeHistogramExemplarTTL is left at its zero value, a default value of
// 5m is used. To always delete the oldest exemplar, set it to a negative value.
NativeHistogramExemplarTTL time.Duration
// now is for testing purposes, by default it's time.Now.
now func() time.Time
// afterFunc is for testing purposes, by default it's time.AfterFunc.
afterFunc func(time.Duration, func()) *time.Timer
}
// HistogramVecOpts bundles the options to create a HistogramVec metric.
// It is mandatory to set HistogramOpts, see there for mandatory fields. VariableLabels
// is optional and can safely be left to its default value.
type HistogramVecOpts struct {
HistogramOpts
// VariableLabels are used to partition the metric vector by the given set
// of labels. Each label value will be constrained with the optional Constraint
// function, if provided.
VariableLabels ConstrainableLabels
}
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
// panics if the buckets in HistogramOpts are not in strictly increasing order.
//
// The returned implementation also implements ExemplarObserver. It is safe to
// perform the corresponding type assertion. Exemplars are tracked separately
// for each bucket.
func NewHistogram(opts HistogramOpts) Histogram {
return newHistogram(
NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
),
opts,
)
}
func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram {
if len(desc.variableLabels.names) != len(labelValues) {
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels.names, labelValues))
}
for _, n := range desc.variableLabels.names {
if n == bucketLabel {
panic(errBucketLabelNotAllowed)
}
}
for _, lp := range desc.constLabelPairs {
if lp.GetName() == bucketLabel {
panic(errBucketLabelNotAllowed)
}
}
if opts.now == nil {
opts.now = time.Now
}
if opts.afterFunc == nil {
opts.afterFunc = time.AfterFunc
}
h := &histogram{
desc: desc,
upperBounds: opts.Buckets,
labelPairs: MakeLabelPairs(desc, labelValues),
nativeHistogramMaxBuckets: opts.NativeHistogramMaxBucketNumber,
nativeHistogramMaxZeroThreshold: opts.NativeHistogramMaxZeroThreshold,
nativeHistogramMinResetDuration: opts.NativeHistogramMinResetDuration,
lastResetTime: opts.now(),
now: opts.now,
afterFunc: opts.afterFunc,
}
if len(h.upperBounds) == 0 && opts.NativeHistogramBucketFactor <= 1 {
h.upperBounds = DefBuckets
}
if opts.NativeHistogramBucketFactor <= 1 {
h.nativeHistogramSchema = math.MinInt32 // To mark that there are no sparse buckets.
} else {
switch {
case opts.NativeHistogramZeroThreshold > 0:
h.nativeHistogramZeroThreshold = opts.NativeHistogramZeroThreshold
case opts.NativeHistogramZeroThreshold == 0:
h.nativeHistogramZeroThreshold = DefNativeHistogramZeroThreshold
} // Leave h.nativeHistogramZeroThreshold at 0 otherwise.
h.nativeHistogramSchema = pickSchema(opts.NativeHistogramBucketFactor)
h.nativeExemplars = makeNativeExemplars(opts.NativeHistogramExemplarTTL, opts.NativeHistogramMaxExemplars)
}
for i, upperBound := range h.upperBounds {
if i < len(h.upperBounds)-1 {
if upperBound >= h.upperBounds[i+1] {
panic(fmt.Errorf(
"histogram buckets must be in increasing order: %f >= %f",
upperBound, h.upperBounds[i+1],
))
}
} else {
if math.IsInf(upperBound, +1) {
// The +Inf bucket is implicit. Remove it here.
h.upperBounds = h.upperBounds[:i]
}
}
}
// Finally we know the final length of h.upperBounds and can make buckets
// for both counts as well as exemplars:
h.counts[0] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))}
atomic.StoreUint64(&h.counts[0].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
atomic.StoreInt32(&h.counts[0].nativeHistogramSchema, h.nativeHistogramSchema)
h.counts[1] = &histogramCounts{buckets: make([]uint64, len(h.upperBounds))}
atomic.StoreUint64(&h.counts[1].nativeHistogramZeroThresholdBits, math.Float64bits(h.nativeHistogramZeroThreshold))
atomic.StoreInt32(&h.counts[1].nativeHistogramSchema, h.nativeHistogramSchema)
h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)
h.init(h) // Init self-collection.
return h
}
type histogramCounts struct {
// Order in this struct matters for the alignment required by atomic
// operations, see http://golang.org/pkg/sync/atomic/#pkg-note-BUG
// sumBits contains the bits of the float64 representing the sum of all
// observations.
sumBits uint64
count uint64
// nativeHistogramZeroBucket counts all (positive and negative)
// observations in the zero bucket (with an absolute value less or equal
// the current threshold, see next field.
nativeHistogramZeroBucket uint64
// nativeHistogramZeroThresholdBits is the bit pattern of the current
// threshold for the zero bucket. It's initially equal to
// nativeHistogramZeroThreshold but may change according to the bucket
// count limitation strategy.
nativeHistogramZeroThresholdBits uint64
// nativeHistogramSchema may change over time according to the bucket
// count limitation strategy and therefore has to be saved here.
nativeHistogramSchema int32
// Number of (positive and negative) sparse buckets.
nativeHistogramBucketsNumber uint32
// Regular buckets.
buckets []uint64
// The sparse buckets for native histograms are implemented with a
// sync.Map for now. A dedicated data structure will likely be more
// efficient. There are separate maps for negative and positive
// observations. The map's value is an *int64, counting observations in
// that bucket. (Note that we don't use uint64 as an int64 won't
// overflow in practice, and working with signed numbers from the
// beginning simplifies the handling of deltas.) The map's key is the
// index of the bucket according to the used
// nativeHistogramSchema. Index 0 is for an upper bound of 1.
nativeHistogramBucketsPositive, nativeHistogramBucketsNegative sync.Map
}
// observe manages the parts of observe that only affects
// histogramCounts. doSparse is true if sparse buckets should be done,
// too.
func (hc *histogramCounts) observe(v float64, bucket int, doSparse bool) {
if bucket < len(hc.buckets) {
atomic.AddUint64(&hc.buckets[bucket], 1)
}
atomicAddFloat(&hc.sumBits, v)
if doSparse && !math.IsNaN(v) {
var (
key int
schema = atomic.LoadInt32(&hc.nativeHistogramSchema)
zeroThreshold = math.Float64frombits(atomic.LoadUint64(&hc.nativeHistogramZeroThresholdBits))
bucketCreated, isInf bool
)
if math.IsInf(v, 0) {
// Pretend v is MaxFloat64 but later increment key by one.
if math.IsInf(v, +1) {
v = math.MaxFloat64
} else {
v = -math.MaxFloat64
}
isInf = true
}
frac, exp := math.Frexp(math.Abs(v))
if schema > 0 {
bounds := nativeHistogramBounds[schema]
key = sort.SearchFloat64s(bounds, frac) + (exp-1)*len(bounds)
} else {
key = exp
if frac == 0.5 {
key--
}
offset := (1 << -schema) - 1
key = (key + offset) >> -schema
}
if isInf {
key++
}
switch {
case v > zeroThreshold:
bucketCreated = addToBucket(&hc.nativeHistogramBucketsPositive, key, 1)
case v < -zeroThreshold:
bucketCreated = addToBucket(&hc.nativeHistogramBucketsNegative, key, 1)
default:
atomic.AddUint64(&hc.nativeHistogramZeroBucket, 1)
}
if bucketCreated {
atomic.AddUint32(&hc.nativeHistogramBucketsNumber, 1)
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hc.count, 1)
}
type histogram struct {
// countAndHotIdx enables lock-free writes with use of atomic updates.
// The most significant bit is the hot index [0 or 1] of the count field
// below. Observe calls update the hot one. All remaining bits count the
// number of Observe calls. Observe starts by incrementing this counter,
// and finish by incrementing the count field in the respective
// histogramCounts, as a marker for completion.
//
// Calls of the Write method (which are non-mutating reads from the
// perspective of the histogram) swap the hot–cold under the writeMtx
// lock. A cooldown is awaited (while locked) by comparing the number of
// observations with the initiation count. Once they match, then the
// last observation on the now cool one has completed. All cold fields must
// be merged into the new hot before releasing writeMtx.
//
// Fields with atomic access first! See alignment constraint:
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
countAndHotIdx uint64
selfCollector
desc *Desc
// Only used in the Write method and for sparse bucket management.
mtx sync.Mutex
// Two counts, one is "hot" for lock-free observations, the other is
// "cold" for writing out a dto.Metric. It has to be an array of
// pointers to guarantee 64bit alignment of the histogramCounts, see
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
counts [2]*histogramCounts
upperBounds []float64
labelPairs []*dto.LabelPair
exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
nativeHistogramSchema int32 // The initial schema. Set to math.MinInt32 if no sparse buckets are used.
nativeHistogramZeroThreshold float64 // The initial zero threshold.
nativeHistogramMaxZeroThreshold float64
nativeHistogramMaxBuckets uint32
nativeHistogramMinResetDuration time.Duration
// lastResetTime is protected by mtx. It is also used as created timestamp.
lastResetTime time.Time
// resetScheduled is protected by mtx. It is true if a reset is
// scheduled for a later time (when nativeHistogramMinResetDuration has
// passed).
resetScheduled bool
nativeExemplars nativeExemplars
// now is for testing purposes, by default it's time.Now.
now func() time.Time
// afterFunc is for testing purposes, by default it's time.AfterFunc.
afterFunc func(time.Duration, func()) *time.Timer
}
func (h *histogram) Desc() *Desc {
return h.desc
}
func (h *histogram) Observe(v float64) {
h.observe(v, h.findBucket(v))
}
// ObserveWithExemplar should not be called in a high-frequency setting
// for a native histogram with configured exemplars. For this case,
// the implementation isn't lock-free and might suffer from lock contention.
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
i := h.findBucket(v)
h.observe(v, i)
h.updateExemplar(v, i, e)
}
func (h *histogram) Write(out *dto.Metric) error {
// For simplicity, we protect this whole method by a mutex. It is not in
// the hot path, i.e. Observe is called much more often than Write. The
// complication of making Write lock-free isn't worth it, if possible at
// all.
h.mtx.Lock()
defer h.mtx.Unlock()
// Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0)
// without touching the count bits. See the struct comments for a full
// description of the algorithm.
n := atomic.AddUint64(&h.countAndHotIdx, 1<<63)
// count is contained unchanged in the lower 63 bits.
count := n & ((1 << 63) - 1)
// The most significant bit tells us which counts is hot. The complement
// is thus the cold one.
hotCounts := h.counts[n>>63]
coldCounts := h.counts[(^n)>>63]
waitForCooldown(count, coldCounts)
his := &dto.Histogram{
Bucket: make([]*dto.Bucket, len(h.upperBounds)),
SampleCount: proto.Uint64(count),
SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))),
CreatedTimestamp: timestamppb.New(h.lastResetTime),
}
out.Histogram = his
out.Label = h.labelPairs
var cumCount uint64
for i, upperBound := range h.upperBounds {
cumCount += atomic.LoadUint64(&coldCounts.buckets[i])
his.Bucket[i] = &dto.Bucket{
CumulativeCount: proto.Uint64(cumCount),
UpperBound: proto.Float64(upperBound),
}
if e := h.exemplars[i].Load(); e != nil {
his.Bucket[i].Exemplar = e.(*dto.Exemplar)
}
}
// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
b := &dto.Bucket{
CumulativeCount: proto.Uint64(count),
UpperBound: proto.Float64(math.Inf(1)),
Exemplar: e.(*dto.Exemplar),
}
his.Bucket = append(his.Bucket, b)
}
if h.nativeHistogramSchema > math.MinInt32 {
his.ZeroThreshold = proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.nativeHistogramZeroThresholdBits)))
his.Schema = proto.Int32(atomic.LoadInt32(&coldCounts.nativeHistogramSchema))
zeroBucket := atomic.LoadUint64(&coldCounts.nativeHistogramZeroBucket)
defer func() {
coldCounts.nativeHistogramBucketsPositive.Range(addAndReset(&hotCounts.nativeHistogramBucketsPositive, &hotCounts.nativeHistogramBucketsNumber))
coldCounts.nativeHistogramBucketsNegative.Range(addAndReset(&hotCounts.nativeHistogramBucketsNegative, &hotCounts.nativeHistogramBucketsNumber))
}()
his.ZeroCount = proto.Uint64(zeroBucket)
his.NegativeSpan, his.NegativeDelta = makeBuckets(&coldCounts.nativeHistogramBucketsNegative)
his.PositiveSpan, his.PositiveDelta = makeBuckets(&coldCounts.nativeHistogramBucketsPositive)
// Add a no-op span to a histogram without observations and with
// a zero threshold of zero. Otherwise, a native histogram would
// look like a classic histogram to scrapers.
if *his.ZeroThreshold == 0 && *his.ZeroCount == 0 && len(his.PositiveSpan) == 0 && len(his.NegativeSpan) == 0 {
his.PositiveSpan = []*dto.BucketSpan{{
Offset: proto.Int32(0),
Length: proto.Uint32(0),
}}
}
if h.nativeExemplars.isEnabled() {
h.nativeExemplars.Lock()
his.Exemplars = append(his.Exemplars, h.nativeExemplars.exemplars...)
h.nativeExemplars.Unlock()
}
}
addAndResetCounts(hotCounts, coldCounts)
return nil
}
// findBucket returns the index of the bucket for the provided value, or
// len(h.upperBounds) for the +Inf bucket.
func (h *histogram) findBucket(v float64) int {
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
// slightly faster than the binary search. If we really care, we could
// switch from one search strategy to the other depending on the number
// of buckets.
//
// Microbenchmarks (BenchmarkHistogramNoLabels):
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
return sort.SearchFloat64s(h.upperBounds, v)
}
// observe is the implementation for Observe without the findBucket part.
func (h *histogram) observe(v float64, bucket int) {
// Do not add to sparse buckets for NaN observations.
doSparse := h.nativeHistogramSchema > math.MinInt32 && !math.IsNaN(v)
// We increment h.countAndHotIdx so that the counter in the lower
// 63 bits gets incremented. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&h.countAndHotIdx, 1)
hotCounts := h.counts[n>>63]
hotCounts.observe(v, bucket, doSparse)
if doSparse {
h.limitBuckets(hotCounts, v, bucket)
}
}
// limitBuckets applies a strategy to limit the number of populated sparse
// buckets. It's generally best effort, and there are situations where the
// number can go higher (if even the lowest resolution isn't enough to reduce
// the number sufficiently, or if the provided counts aren't fully updated yet
// by a concurrently happening Write call).
func (h *histogram) limitBuckets(counts *histogramCounts, value float64, bucket int) {
if h.nativeHistogramMaxBuckets == 0 {
return // No limit configured.
}
if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&counts.nativeHistogramBucketsNumber) {
return // Bucket limit not exceeded yet.
}
h.mtx.Lock()
defer h.mtx.Unlock()
// The hot counts might have been swapped just before we acquired the
// lock. Re-fetch the hot counts first...
n := atomic.LoadUint64(&h.countAndHotIdx)
hotIdx := n >> 63
coldIdx := (^n) >> 63
hotCounts := h.counts[hotIdx]
coldCounts := h.counts[coldIdx]
// ...and then check again if we really have to reduce the bucket count.
if h.nativeHistogramMaxBuckets >= atomic.LoadUint32(&hotCounts.nativeHistogramBucketsNumber) {
return // Bucket limit not exceeded after all.
}
// Try the various strategies in order.
if h.maybeReset(hotCounts, coldCounts, coldIdx, value, bucket) {
return
}
// One of the other strategies will happen. To undo what they will do as
// soon as enough time has passed to satisfy
// h.nativeHistogramMinResetDuration, schedule a reset at the right time
// if we haven't done so already.
if h.nativeHistogramMinResetDuration > 0 && !h.resetScheduled {
h.resetScheduled = true
h.afterFunc(h.nativeHistogramMinResetDuration-h.now().Sub(h.lastResetTime), h.reset)
}
if h.maybeWidenZeroBucket(hotCounts, coldCounts) {
return
}
h.doubleBucketWidth(hotCounts, coldCounts)
}
// maybeReset resets the whole histogram if at least
// h.nativeHistogramMinResetDuration has been passed. It returns true if the
// histogram has been reset. The caller must have locked h.mtx.
func (h *histogram) maybeReset(
hot, cold *histogramCounts, coldIdx uint64, value float64, bucket int,
) bool {
// We are using the possibly mocked h.now() rather than
// time.Since(h.lastResetTime) to enable testing.
if h.nativeHistogramMinResetDuration == 0 || // No reset configured.
h.resetScheduled || // Do not interefere if a reset is already scheduled.
h.now().Sub(h.lastResetTime) < h.nativeHistogramMinResetDuration {
return false
}
// Completely reset coldCounts.
h.resetCounts(cold)
// Repeat the latest observation to not lose it completely.
cold.observe(value, bucket, true)
// Make coldCounts the new hot counts while resetting countAndHotIdx.
n := atomic.SwapUint64(&h.countAndHotIdx, (coldIdx<<63)+1)
count := n & ((1 << 63) - 1)
waitForCooldown(count, hot)
// Finally, reset the formerly hot counts, too.
h.resetCounts(hot)
h.lastResetTime = h.now()
return true
}
// reset resets the whole histogram. It locks h.mtx itself, i.e. it has to be
// called without having locked h.mtx.
func (h *histogram) reset() {
h.mtx.Lock()
defer h.mtx.Unlock()
n := atomic.LoadUint64(&h.countAndHotIdx)
hotIdx := n >> 63
coldIdx := (^n) >> 63
hot := h.counts[hotIdx]
cold := h.counts[coldIdx]
// Completely reset coldCounts.
h.resetCounts(cold)
// Make coldCounts the new hot counts while resetting countAndHotIdx.
n = atomic.SwapUint64(&h.countAndHotIdx, coldIdx<<63)
count := n & ((1 << 63) - 1)
waitForCooldown(count, hot)
// Finally, reset the formerly hot counts, too.
h.resetCounts(hot)
h.lastResetTime = h.now()
h.resetScheduled = false
}
// maybeWidenZeroBucket widens the zero bucket until it includes the existing
// buckets closest to the zero bucket (which could be two, if an equidistant
// negative and a positive bucket exists, but usually it's only one bucket to be
// merged into the new wider zero bucket). h.nativeHistogramMaxZeroThreshold
// limits how far the zero bucket can be extended, and if that's not enough to
// include an existing bucket, the method returns false. The caller must have
// locked h.mtx.
func (h *histogram) maybeWidenZeroBucket(hot, cold *histogramCounts) bool {
currentZeroThreshold := math.Float64frombits(atomic.LoadUint64(&hot.nativeHistogramZeroThresholdBits))
if currentZeroThreshold >= h.nativeHistogramMaxZeroThreshold {
return false
}
// Find the key of the bucket closest to zero.
smallestKey := findSmallestKey(&hot.nativeHistogramBucketsPositive)
smallestNegativeKey := findSmallestKey(&hot.nativeHistogramBucketsNegative)
if smallestNegativeKey < smallestKey {
smallestKey = smallestNegativeKey