-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy paths1angle.h
206 lines (164 loc) · 6.35 KB
/
s1angle.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Copyright 2005 Google Inc. All Rights Reserved.
#ifndef UTIL_GEOMETRY_S1ANGLE_H_
#define UTIL_GEOMETRY_S1ANGLE_H_
#include <iosfwd>
using std::ostream;
// to forward declare ostream
#include <math.h>
#include "base/basictypes.h"
#include "util/math/mathutil.h"
#include "s2.h"
class S2LatLng;
// This class represents a one-dimensional angle (as opposed to a
// two-dimensional solid angle). It has methods for converting angles to
// or from radians, degrees, and the E5/E6/E7 representations (i.e. degrees
// multiplied by 1e5/1e6/1e7 and rounded to the nearest integer).
//
// This class has built-in support for the E5, E6, and E7
// representations. An E5 is the measure of an angle in degrees,
// multiplied by 10**5.
//
// This class is intended to be copied by value as desired. It uses
// the default copy constructor and assignment operator.
class S1Angle {
public:
// These methods construct S1Angle objects from their measure in radians
// or degrees.
inline static S1Angle Radians(double radians);
inline static S1Angle Degrees(double degrees);
inline static S1Angle E5(int32 e5);
inline static S1Angle E6(int32 e6);
inline static S1Angle E7(int32 e7);
// Convenience functions -- to use when args have been fixed32s in protos.
//
// The arguments are static_cast into int32, so very large unsigned values
// are treated as negative numbers.
inline static S1Angle UnsignedE6(uint32 e6);
inline static S1Angle UnsignedE7(uint32 e7);
// The default constructor yields a zero angle. This is useful for STL
// containers and class methods with output arguments.
inline S1Angle() : radians_(0) {}
// Return the angle between two points, which is also equal to the distance
// between these points on the unit sphere. The points do not need to be
// normalized.
S1Angle(S2Point const& x, S2Point const& y);
// Like the constructor above, but return the angle (i.e., distance)
// between two S2LatLng points.
S1Angle(S2LatLng const& x, S2LatLng const& y);
double radians() const { return radians_; }
double degrees() const { return radians_ * (180 / M_PI); }
int32 e5() const { return MathUtil::FastIntRound(degrees() * 1e5); }
int32 e6() const { return MathUtil::FastIntRound(degrees() * 1e6); }
int32 e7() const { return MathUtil::FastIntRound(degrees() * 1e7); }
// Return the absolute value of an angle.
S1Angle abs() const { return S1Angle(fabs(radians_)); }
// Comparison operators.
friend inline bool operator==(S1Angle const& x, S1Angle const& y);
friend inline bool operator!=(S1Angle const& x, S1Angle const& y);
friend inline bool operator<(S1Angle const& x, S1Angle const& y);
friend inline bool operator>(S1Angle const& x, S1Angle const& y);
friend inline bool operator<=(S1Angle const& x, S1Angle const& y);
friend inline bool operator>=(S1Angle const& x, S1Angle const& y);
// Simple arithmetic operators for manipulating S1Angles.
friend inline S1Angle operator-(S1Angle const& a);
friend inline S1Angle operator+(S1Angle const& a, S1Angle const& b);
friend inline S1Angle operator-(S1Angle const& a, S1Angle const& b);
friend inline S1Angle operator*(double m, S1Angle const& a);
friend inline S1Angle operator*(S1Angle const& a, double m);
friend inline S1Angle operator/(S1Angle const& a, double m);
friend inline double operator/(S1Angle const& a, S1Angle const& b);
inline S1Angle& operator+=(S1Angle const& a);
inline S1Angle& operator-=(S1Angle const& a);
inline S1Angle& operator*=(double m);
inline S1Angle& operator/=(double m);
// Return the angle normalized to the range (-180, 180] degrees.
S1Angle Normalized() const;
// Normalize this angle to the range (-180, 180] degrees.
void Normalize();
private:
explicit S1Angle(double radians) : radians_(radians) {}
double radians_;
};
DECLARE_POD(S1Angle);
inline bool operator==(S1Angle const& x, S1Angle const& y) {
return x.radians() == y.radians();
}
inline bool operator!=(S1Angle const& x, S1Angle const& y) {
return x.radians() != y.radians();
}
inline bool operator<(S1Angle const& x, S1Angle const& y) {
return x.radians() < y.radians();
}
inline bool operator>(S1Angle const& x, S1Angle const& y) {
return x.radians() > y.radians();
}
inline bool operator<=(S1Angle const& x, S1Angle const& y) {
return x.radians() <= y.radians();
}
inline bool operator>=(S1Angle const& x, S1Angle const& y) {
return x.radians() >= y.radians();
}
inline S1Angle operator-(S1Angle const& a) {
return S1Angle::Radians(-a.radians());
}
inline S1Angle operator+(S1Angle const& a, S1Angle const& b) {
return S1Angle::Radians(a.radians() + b.radians());
}
inline S1Angle operator-(S1Angle const& a, S1Angle const& b) {
return S1Angle::Radians(a.radians() - b.radians());
}
inline S1Angle operator*(double m, S1Angle const& a) {
return S1Angle::Radians(m * a.radians());
}
inline S1Angle operator*(S1Angle const& a, double m) {
return S1Angle::Radians(m * a.radians());
}
inline S1Angle operator/(S1Angle const& a, double m) {
return S1Angle::Radians(a.radians() / m);
}
inline double operator/(S1Angle const& a, S1Angle const& b) {
return a.radians() / b.radians();
}
inline S1Angle& S1Angle::operator+=(S1Angle const& a) {
radians_ += a.radians();
return *this;
}
inline S1Angle& S1Angle::operator-=(S1Angle const& a) {
radians_ -= a.radians();
return *this;
}
inline S1Angle& S1Angle::operator*=(double m) {
radians_ *= m;
return *this;
}
inline S1Angle& S1Angle::operator/=(double m) {
radians_ /= m;
return *this;
}
inline S1Angle S1Angle::Radians(double radians) {
return S1Angle(radians);
}
inline S1Angle S1Angle::Degrees(double degrees) {
return S1Angle(degrees * (M_PI / 180));
}
inline S1Angle S1Angle::E5(int32 e5) {
// Multiplying by 1e-5 isn't quite as accurate as dividing by 1e5,
// but it's about 10 times faster and more than accurate enough.
return Degrees(e5 * 1e-5);
}
inline S1Angle S1Angle::E6(int32 e6) {
return Degrees(e6 * 1e-6);
}
inline S1Angle S1Angle::E7(int32 e7) {
return Degrees(e7 * 1e-7);
}
inline S1Angle S1Angle::UnsignedE6(uint32 e6) {
return Degrees(static_cast<int32>(e6) * 1e-6);
}
inline S1Angle S1Angle::UnsignedE7(uint32 e7) {
return Degrees(static_cast<int32>(e7) * 1e-7);
}
// Writes the angle in degrees with 7 digits of precision after the
// decimal point, e.g. "17.3745904".
ostream& operator<<(ostream& os, S1Angle const& a);
#endif // UTIL_GEOMETRY_S1ANGLE_H_