-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy paths2cellid.h
511 lines (414 loc) · 18.2 KB
/
s2cellid.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
// Copyright 2005 Google Inc. All Rights Reserved.
#ifndef UTIL_GEOMETRY_S2CELLID_H_
#define UTIL_GEOMETRY_S2CELLID_H_
#include <iostream>
using std::ostream;
using std::cout;
using std::endl;
#include <string>
using std::string;
#include <vector>
using std::vector;
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/port.h" // for HASH_NAMESPACE_DECLARATION_START
#include "s2.h"
#include "util/math/vector2.h"
class S2LatLng;
// An S2CellId is a 64-bit unsigned integer that uniquely identifies a
// cell in the S2 cell decomposition. It has the following format:
//
// id = [face][face_pos]
//
// face: a 3-bit number (range 0..5) encoding the cube face.
//
// face_pos: a 61-bit number encoding the position of the center of this
// cell along the Hilbert curve over this face (see the Wiki
// pages for details).
//
// Sequentially increasing cell ids follow a continuous space-filling curve
// over the entire sphere. They have the following properties:
//
// - The id of a cell at level k consists of a 3-bit face number followed
// by k bit pairs that recursively select one of the four children of
// each cell. The next bit is always 1, and all other bits are 0.
// Therefore, the level of a cell is determined by the position of its
// lowest-numbered bit that is turned on (for a cell at level k, this
// position is 2 * (kMaxLevel - k).)
//
// - The id of a parent cell is at the midpoint of the range of ids spanned
// by its children (or by its descendants at any level).
//
// Leaf cells are often used to represent points on the unit sphere, and
// this class provides methods for converting directly between these two
// representations. For cells that represent 2D regions rather than
// discrete point, it is better to use the S2Cell class.
//
// This class is intended to be copied by value as desired. It uses
// the default copy constructor and assignment operator.
class S2CellId {
public:
// Although only 60 bits are needed to represent the index of a leaf
// cell, we need an extra bit in order to represent the position of
// the center of the leaf cell along the Hilbert curve.
static int const kFaceBits = 3;
static int const kNumFaces = 6;
static int const kMaxLevel = S2::kMaxCellLevel; // Valid levels: 0..kMaxLevel
static int const kPosBits = 2 * kMaxLevel + 1;
static int const kMaxSize = 1 << kMaxLevel;
inline explicit S2CellId(uint64 id) : id_(id) {}
// The default constructor returns an invalid cell id.
inline S2CellId() : id_(0) {}
inline static S2CellId None() { return S2CellId(); }
// Returns an invalid cell id guaranteed to be larger than any
// valid cell id. Useful for creating indexes.
inline static S2CellId Sentinel() { return S2CellId(~uint64(0)); }
// Return a cell given its face (range 0..5), 61-bit Hilbert curve position
// within that face, and level (range 0..kMaxLevel). The given position
// will be modified to correspond to the Hilbert curve position at the
// center of the returned cell. This is a static function rather than a
// constructor in order to give names to the arguments.
static S2CellId FromFacePosLevel(int face, uint64 pos, int level);
// Return the leaf cell containing the given point (a direction
// vector, not necessarily unit length).
static S2CellId FromPoint(S2Point const& p);
// Return the leaf cell containing the given normalized S2LatLng.
static S2CellId FromLatLng(S2LatLng const& ll);
// Return the direction vector corresponding to the center of the given
// cell. The vector returned by ToPointRaw is not necessarily unit length.
S2Point ToPoint() const { return ToPointRaw().Normalize(); }
S2Point ToPointRaw() const;
// Return the center of the cell in (s,t) coordinates (see s2.h).
Vector2_d GetCenterST() const;
// Return the center of the cell in (u,v) coordinates (see s2.h). Note that
// the center of the cell is defined as the point at which it is recursively
// subdivided into four children; in general, it is not at the midpoint of
// the (u,v) rectangle covered by the cell.
Vector2_d GetCenterUV() const;
// Return the S2LatLng corresponding to the center of the given cell.
S2LatLng ToLatLng() const;
// The 64-bit unique identifier for this cell.
inline uint64 id() const { return id_; }
// Return true if id() represents a valid cell.
inline bool is_valid() const;
// Which cube face this cell belongs to, in the range 0..5.
inline int face() const;
// The position of the cell center along the Hilbert curve over this face,
// in the range 0..(2**kPosBits-1).
inline uint64 pos() const;
// Return the subdivision level of the cell (range 0..kMaxLevel).
int level() const;
// Return the edge length of this cell in (i,j)-space.
inline int GetSizeIJ() const;
// Return the edge length of this cell in (s,t)-space.
inline double GetSizeST() const;
// Like the above, but return the size of cells at the given level.
inline static int GetSizeIJ(int level);
inline static double GetSizeST(int level);
// Return true if this is a leaf cell (more efficient than checking
// whether level() == kMaxLevel).
inline bool is_leaf() const;
// Return true if this is a top-level face cell (more efficient than
// checking whether level() == 0).
inline bool is_face() const;
// Return the child position (0..3) of this cell's ancestor at the given
// level, relative to its parent. The argument should be in the range
// 1..kMaxLevel. For example, child_position(1) returns the position of
// this cell's level-1 ancestor within its top-level face cell.
inline int child_position(int level) const;
// Methods that return the range of cell ids that are contained
// within this cell (including itself). The range is *inclusive*
// (i.e. test using >= and <=) and the return values of both
// methods are valid leaf cell ids.
//
// These methods should not be used for iteration. If you want to
// iterate through all the leaf cells, call child_begin(kMaxLevel) and
// child_end(kMaxLevel) instead.
//
// It would in fact be error-prone to define a range_end() method,
// because (range_max().id() + 1) is not always a valid cell id, and the
// iterator would need to be tested using "<" rather that the usual "!=".
inline S2CellId range_min() const;
inline S2CellId range_max() const;
// Return true if the given cell is contained within this one.
inline bool contains(S2CellId const& other) const;
// Return true if the given cell intersects this one.
inline bool intersects(S2CellId const& other) const;
// Return the cell at the previous level or at the given level (which must
// be less than or equal to the current level).
inline S2CellId parent() const;
inline S2CellId parent(int level) const;
// Return the immediate child of this cell at the given traversal order
// position (in the range 0 to 3). This cell must not be a leaf cell.
inline S2CellId child(int position) const;
// Iterator-style methods for traversing the immediate children of a cell or
// all of the children at a given level (greater than or equal to the current
// level). Note that the end value is exclusive, just like standard STL
// iterators, and may not even be a valid cell id. You should iterate using
// code like this:
//
// for(S2CellId c = id.child_begin(); c != id.child_end(); c = c.next())
// ...
//
// The convention for advancing the iterator is "c = c.next()" rather
// than "++c" to avoid possible confusion with incrementing the
// underlying 64-bit cell id.
inline S2CellId child_begin() const;
inline S2CellId child_begin(int level) const;
inline S2CellId child_end() const;
inline S2CellId child_end(int level) const;
// Return the next/previous cell at the same level along the Hilbert curve.
// Works correctly when advancing from one face to the next, but
// does *not* wrap around from the last face to the first or vice versa.
inline S2CellId next() const;
inline S2CellId prev() const;
// This method advances or retreats the indicated number of steps along the
// Hilbert curve at the current level, and returns the new position. The
// position is never advanced past End() or before Begin().
S2CellId advance(int64 steps) const;
// Like next() and prev(), but these methods wrap around from the last face
// to the first and vice versa. They should *not* be used for iteration in
// conjunction with child_begin(), child_end(), Begin(), or End(). The
// input must be a valid cell id.
inline S2CellId next_wrap() const;
inline S2CellId prev_wrap() const;
// This method advances or retreats the indicated number of steps along the
// Hilbert curve at the current level, and returns the new position. The
// position wraps between the first and last faces as necessary. The input
// must be a valid cell id.
S2CellId advance_wrap(int64 steps) const;
// Iterator-style methods for traversing all the cells along the Hilbert
// curve at a given level (across all 6 faces of the cube). Note that the
// end value is exclusive (just like standard STL iterators), and is not a
// valid cell id.
inline static S2CellId Begin(int level);
inline static S2CellId End(int level);
// Methods to encode and decode cell ids to compact text strings suitable
// for display or indexing. Cells at lower levels (i.e. larger cells) are
// encoded into fewer characters. The maximum token length is 16.
//
// ToToken() returns a string by value for convenience; the compiler
// does this without intermediate copying in most cases.
//
// These methods guarantee that FromToken(ToToken(x)) == x even when
// "x" is an invalid cell id. All tokens are alphanumeric strings.
// FromToken() returns S2CellId::None() for malformed inputs.
string ToToken() const;
static S2CellId FromToken(string const& token);
// Creates a debug human readable string. Used for << and available for direct
// usage as well.
string ToString() const;
// Return the four cells that are adjacent across the cell's four edges.
// Neighbors are returned in the order defined by S2Cell::GetEdge. All
// neighbors are guaranteed to be distinct.
void GetEdgeNeighbors(S2CellId neighbors[4]) const;
// Return the neighbors of closest vertex to this cell at the given level,
// by appending them to "output". Normally there are four neighbors, but
// the closest vertex may only have three neighbors if it is one of the 8
// cube vertices.
//
// Requires: level < this->level(), so that we can determine which vertex is
// closest (in particular, level == kMaxLevel is not allowed).
void AppendVertexNeighbors(int level, vector<S2CellId>* output) const;
// Append all neighbors of this cell at the given level to "output". Two
// cells X and Y are neighbors if their boundaries intersect but their
// interiors do not. In particular, two cells that intersect at a single
// point are neighbors.
//
// Requires: nbr_level >= this->level(). Note that for cells adjacent to a
// face vertex, the same neighbor may be appended more than once.
void AppendAllNeighbors(int nbr_level, vector<S2CellId>* output) const;
/////////////////////////////////////////////////////////////////////
// Low-level methods.
// Return a leaf cell given its cube face (range 0..5) and
// i- and j-coordinates (see s2.h).
static S2CellId FromFaceIJ(int face, int i, int j);
// Return the (face, i, j) coordinates for the leaf cell corresponding to
// this cell id. Since cells are represented by the Hilbert curve position
// at the center of the cell, the returned (i,j) for non-leaf cells will be
// a leaf cell adjacent to the cell center. If "orientation" is non-NULL,
// also return the Hilbert curve orientation for the current cell.
int ToFaceIJOrientation(int* pi, int* pj, int* orientation) const;
// Return the lowest-numbered bit that is on for this cell id, which is
// equal to (uint64(1) << (2 * (kMaxLevel - level))). So for example,
// a.lsb() <= b.lsb() if and only if a.level() >= b.level(), but the
// first test is more efficient.
uint64 lsb() const { return id_ & -id_; }
// Return the lowest-numbered bit that is on for cells at the given level.
inline static uint64 lsb_for_level(int level) {
return uint64(1) << (2 * (kMaxLevel - level));
}
private:
// This is the offset required to wrap around from the beginning of the
// Hilbert curve to the end or vice versa; see next_wrap() and prev_wrap().
static uint64 const kWrapOffset = uint64(kNumFaces) << kPosBits;
// Return the i- or j-index of the leaf cell containing the given
// s- or t-value. Values are clamped appropriately.
inline static int STtoIJ(double s);
// Return the (face, si, ti) coordinates of the center of the cell. Note
// that although (si,ti) coordinates span the range [0,2**31] in general,
// the cell center coordinates are always in the range [1,2**31-1] and
// therefore can be represented using a signed 32-bit integer.
inline int GetCenterSiTi(int* psi, int* pti) const;
// Given (i, j) coordinates that may be out of bounds, normalize them by
// returning the corresponding neighbor cell on an adjacent face.
static S2CellId FromFaceIJWrap(int face, int i, int j);
// Inline helper function that calls FromFaceIJ if "same_face" is true,
// or FromFaceIJWrap if "same_face" is false.
inline static S2CellId FromFaceIJSame(int face, int i, int j, bool same_face);
uint64 id_;
} PACKED; // Necessary so that structures containing S2CellId's can be PACKED.
DECLARE_POD(S2CellId);
inline bool operator==(S2CellId const& x, S2CellId const& y) {
return x.id() == y.id();
}
inline bool operator!=(S2CellId const& x, S2CellId const& y) {
return x.id() != y.id();
}
inline bool operator<(S2CellId const& x, S2CellId const& y) {
return x.id() < y.id();
}
inline bool operator>(S2CellId const& x, S2CellId const& y) {
return x.id() > y.id();
}
inline bool operator<=(S2CellId const& x, S2CellId const& y) {
return x.id() <= y.id();
}
inline bool operator>=(S2CellId const& x, S2CellId const& y) {
return x.id() >= y.id();
}
inline bool S2CellId::is_valid() const {
return (face() < kNumFaces && (lsb() & GG_ULONGLONG(0x1555555555555555)));
}
inline int S2CellId::face() const {
return id_ >> kPosBits;
}
inline uint64 S2CellId::pos() const {
return id_ & (~uint64(0) >> kFaceBits);
}
inline int S2CellId::GetSizeIJ() const {
return GetSizeIJ(level());
}
inline double S2CellId::GetSizeST() const {
return GetSizeST(level());
}
inline int S2CellId::GetSizeIJ(int level) {
return 1 << (kMaxLevel - level);
}
inline double S2CellId::GetSizeST(int level) {
// Floating-point multiplication is much faster than division.
return GetSizeIJ(level) * (1.0 / kMaxSize);
}
inline bool S2CellId::is_leaf() const {
return int(id_) & 1;
}
inline bool S2CellId::is_face() const {
return (id_ & (lsb_for_level(0) - 1)) == 0;
}
inline int S2CellId::child_position(int level) const {
DCHECK(is_valid());
return static_cast<int>(id_ >> (2 * (kMaxLevel - level) + 1)) & 3;
}
inline S2CellId S2CellId::range_min() const {
return S2CellId(id_ - (lsb() - 1));
}
inline S2CellId S2CellId::range_max() const {
return S2CellId(id_ + (lsb() - 1));
}
inline bool S2CellId::contains(S2CellId const& other) const {
DCHECK(is_valid());
DCHECK(other.is_valid());
return other >= range_min() && other <= range_max();
}
inline bool S2CellId::intersects(S2CellId const& other) const {
DCHECK(is_valid());
DCHECK(other.is_valid());
return other.range_min() <= range_max() && other.range_max() >= range_min();
}
inline S2CellId S2CellId::parent(int level) const {
DCHECK(is_valid());
DCHECK_GE(level, 0);
DCHECK_LE(level, this->level());
uint64 new_lsb = lsb_for_level(level);
return S2CellId((id_ & -new_lsb) | new_lsb);
}
inline S2CellId S2CellId::parent() const {
DCHECK(is_valid());
DCHECK(!is_face());
uint64 new_lsb = lsb() << 2;
return S2CellId((id_ & -new_lsb) | new_lsb);
}
inline S2CellId S2CellId::child(int position) const {
DCHECK(is_valid());
DCHECK(!is_leaf());
// To change the level, we need to move the least-significant bit two
// positions downward. We do this by subtracting (4 * new_lsb) and adding
// new_lsb. Then to advance to the given child cell, we add
// (2 * position * new_lsb).
uint64 new_lsb = lsb() >> 2;
return S2CellId(id_ + (2 * position + 1 - 4) * new_lsb);
}
inline S2CellId S2CellId::child_begin() const {
DCHECK(is_valid());
DCHECK(!is_leaf());
uint64 old_lsb = lsb();
return S2CellId(id_ - old_lsb + (old_lsb >> 2));
}
inline S2CellId S2CellId::child_begin(int level) const {
DCHECK(is_valid());
DCHECK_GE(level, this->level());
DCHECK_LE(level, kMaxLevel);
return S2CellId(id_ - lsb() + lsb_for_level(level));
}
inline S2CellId S2CellId::child_end() const {
DCHECK(is_valid());
DCHECK(!is_leaf());
uint64 old_lsb = lsb();
return S2CellId(id_ + old_lsb + (old_lsb >> 2));
}
inline S2CellId S2CellId::child_end(int level) const {
DCHECK(is_valid());
DCHECK_GE(level, this->level());
DCHECK_LE(level, kMaxLevel);
return S2CellId(id_ + lsb() + lsb_for_level(level));
}
inline S2CellId S2CellId::next() const {
return S2CellId(id_ + (lsb() << 1));
}
inline S2CellId S2CellId::prev() const {
return S2CellId(id_ - (lsb() << 1));
}
inline S2CellId S2CellId::next_wrap() const {
DCHECK(is_valid());
S2CellId n = next();
if (n.id_ < kWrapOffset) return n;
return S2CellId(n.id_ - kWrapOffset);
}
inline S2CellId S2CellId::prev_wrap() const {
DCHECK(is_valid());
S2CellId p = prev();
if (p.id_ < kWrapOffset) return p;
return S2CellId(p.id_ + kWrapOffset);
}
inline S2CellId S2CellId::Begin(int level) {
return FromFacePosLevel(0, 0, 0).child_begin(level);
}
inline S2CellId S2CellId::End(int level) {
return FromFacePosLevel(5, 0, 0).child_end(level);
}
ostream& operator<<(ostream& os, S2CellId const& id);
#ifndef SWIG
#if defined __GNUC__ || defined __APPLE__
#include <ext/hash_set>
#else
#include <hash_set>
#endif
namespace __gnu_cxx {
template<> struct hash<S2CellId> {
size_t operator()(S2CellId const& id) const {
return static_cast<size_t>(id.id() >> 32) + static_cast<size_t>(id.id());
}
};
} // namespace __gnu_cxx
#endif // SWIG
#endif // UTIL_GEOMETRY_S2CELLID_H_