forked from cvondrick/soundnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_train.lua
257 lines (213 loc) · 8.38 KB
/
main_train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
require 'torch'
require 'nn'
require 'optim'
-- to specify these at runtime, you can do, e.g.:
-- $ lr=0.001 th main.lua
opt = {
dataset = 'audio', -- indicates what dataset load to use (in data.lua)
nThreads = 40, -- how many threads to pre-fetch data
batchSize = 64, -- self-explanatory
loadSize = 22050*20, -- when loading images, resize first to this size
fineSize = 22050*20, -- crop this size from the loaded image
lr = 0.001, -- learning rate
lambda = 250,
beta1 = 0.9, -- momentum term for adam
meanIter = 0, -- how many iterations to retrieve for mean estimation
saveIter = 5000, -- write check point on this interval
niter = 10000, -- number of iterations through dataset
ntrain = math.huge, -- how big one epoch should be
gpu = 1, -- which GPU to use; consider using CUDA_VISIBLE_DEVICES instead
cudnn = 1, -- whether to use cudnn or not
finetune = '', -- if set, will load this network instead of starting from scratch
name = 'soundnet', -- the name of the experiment
randomize = 1, -- whether to shuffle the data file or not
display_port = 8001, -- port to push graphs
display_id = 1, -- window ID when pushing graphs
data_root = '/data/vision/torralba/crossmodal/flickr_videos/soundnet/mp3',
label_binary_file = '/data/vision/torralba/crossmodal/soundnet/features/VGG16_IMNET_TRAIN_B%04d/prob',
label2_binary_file = '/data/vision/torralba/crossmodal/soundnet/features/VGG16_PLACES2_TRAIN_B%04d/prob',
label_text_file = '/data/vision/torralba/crossmodal/soundnet/lmdbs/train_frames4_%04d.txt',
label_dim = 1000,
label2_dim = 401,
label_time_steps = 4,
video_frame_time = 5, -- 5 seconds
sample_rate = 22050,
mean = 0,
}
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
torch.manualSeed(0)
torch.setnumthreads(1)
torch.setdefaulttensortype('torch.FloatTensor')
-- if using GPU, select indicated one
if opt.gpu > 0 then
require 'cunn'
cutorch.setDevice(opt.gpu)
end
-- create data loader
local DataLoader = paths.dofile('data/data.lua')
local data = DataLoader.new(opt.nThreads, opt.dataset, opt)
print("Dataset: " .. opt.dataset, " Size: ", data:size())
-- define the model
local net
if opt.finetune == '' then -- build network from scratch
-- SpatialConvolution is (nInputChannels, nOutputChannels, 1, kernelWidth, 1, stride, 0, padding)
-- the constants are for the other dimension (which is unused)
net = nn.Sequential()
net:add(nn.SpatialConvolution(1, 16, 1,64, 1,2, 0,32))
net:add(nn.SpatialBatchNormalization(16))
net:add(nn.ReLU(true))
net:add(nn.SpatialMaxPooling(1,8, 1,8))
net:add(nn.SpatialConvolution(16, 32, 1,32, 1,2, 0,16))
net:add(nn.SpatialBatchNormalization(32))
net:add(nn.ReLU(true))
net:add(nn.SpatialMaxPooling(1,8, 1,8))
net:add(nn.SpatialConvolution(32, 64, 1,16, 1,2, 0,8))
net:add(nn.SpatialBatchNormalization(64))
net:add(nn.ReLU(true))
net:add(nn.SpatialConvolution(64, 128, 1,8, 1,2, 0,4))
net:add(nn.SpatialBatchNormalization(128))
net:add(nn.ReLU(true))
net:add(nn.SpatialConvolution(128, 256, 1,4, 1,2, 0,2))
net:add(nn.SpatialBatchNormalization(256))
net:add(nn.ReLU(true))
net:add(nn.SpatialMaxPooling(1,4, 1,4))
net:add(nn.SpatialConvolution(256, 512, 1,4, 1,2, 0,2))
net:add(nn.SpatialBatchNormalization(512))
net:add(nn.ReLU(true))
net:add(nn.SpatialConvolution(512, 1024, 1,4, 1,2, 0,2))
net:add(nn.SpatialBatchNormalization(1024))
net:add(nn.ReLU(true))
net:add(nn.ConcatTable():add(nn.SpatialConvolution(1024, 1000, 1,8, 1,2, 0,0))
:add(nn.SpatialConvolution(1024, 401, 1,8, 1,2, 0,0)))
net:add(nn.ParallelTable():add(nn.SplitTable(3)):add(nn.SplitTable(3)))
net:add(nn.FlattenTable())
local output_net = nn.ParallelTable()
-- There is a loop over 8 because SoundNet predicts 2 distributions (objects, scenes) for every 5 seconds.
-- The input is 20 seconds. So, this means there are 2 * 20 / 5 = 8 output distributions.
for i=1,8 do
output_net:add(nn.Sequential():add(nn.Contiguous()):add(nn.LogSoftMax()):add(nn.Squeeze()))
end
net:add(output_net)
-- initialize the model
local function weights_init(m)
local name = torch.type(m)
if name:find('Convolution') then
m.weight:normal(0.0, 0.01)
m.bias:fill(0)
elseif name:find('BatchNormalization') then
if m.weight then m.weight:normal(1.0, 0.02) end
if m.bias then m.bias:fill(0) end
end
end
net:apply(weights_init) -- loop over all layers, applying weights_init
else -- load in existing network
print('loading ' .. opt.finetune)
net = torch.load(opt.finetune)
end
print(net)
-- define the loss
local criterion = nn.ParallelCriterion(false)
for i=1,8 do
criterion:add(nn.DistKLDivCriterion())
end
-- create the data placeholders
local input = torch.Tensor(opt.batchSize, 1, opt.fineSize, 1)
local labels = {}
for i=1,opt.label_time_steps do
labels[i] = torch.Tensor(opt.batchSize, 1000)
end
for i=1,opt.label_time_steps do
labels[opt.label_time_steps+i] = torch.Tensor(opt.batchSize, 401)
end
local err
-- timers to roughly profile performance
local tm = torch.Timer()
local data_tm = torch.Timer()
-- ship everything to GPU if needed
if opt.gpu > 0 then
input = input:cuda()
for i=1,#labels do
labels[i] = labels[i]:cuda()
end
net:cuda()
criterion:cuda()
end
-- conver to cudnn if needed
if opt.gpu > 0 and opt.cudnn > 0 then
require 'cudnn'
net = cudnn.convert(net, cudnn)
end
-- get a vector of parameters
local parameters, gradParameters = net:getParameters()
-- show graphics
disp = require 'display'
disp.url = 'http://localhost:' .. opt.display_port .. '/events'
-- optimization closure
-- the optimizer will call this function to get the gradients
local data_im,data_label,data_extra
local fx = function(x)
gradParameters:zero()
-- fetch data
data_tm:reset(); data_tm:resume()
data_im,data_label,data_label2,data_extra = data:getBatch()
data_tm:stop()
-- ship data to GPU
input:copy(data_im:view(opt.batchSize, 1, opt.fineSize, 1))
for i=1,opt.label_time_steps do
labels[i]:copy(data_label:select(3,i))
end
for i=1,opt.label_time_steps do
labels[opt.label_time_steps+i]:copy(data_label2:select(3,i))
end
-- forward, backwards
local output = net:forward(input)
err = criterion:forward(output, labels) / #labels * opt.lambda
local df_do = criterion:backward(output, labels)
for i=1,#labels do df_do[i]:mul(opt.lambda / #labels) end
net:backward(input, df_do)
-- return gradients
return err, gradParameters
end
local counter = 0
local history = {}
-- parameters for the optimization
-- very important: you must only create this table once!
-- the optimizer will add fields to this table (such as momentum)
local optimState = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
-- train main loop
for epoch = 1,opt.niter do -- for each epoch
for i = 1, math.min(data:size(), opt.ntrain), opt.batchSize do -- for each mini-batch
collectgarbage() -- necessary sometimes
tm:reset()
-- do one iteration
optim.adam(fx, parameters, optimState)
-- logging
if counter % 10 == 0 then
table.insert(history, {counter, err})
disp.plot(history, {win=opt.display_id+1, title=opt.name, labels = {"iteration", "err"}})
local w = net.modules[1].weight:clone():float():squeeze()
disp.image(w, {win=opt.display_id+30, title=("conv1 min: %.4f, max: %.4f"):format(w:min(), w:max())})
end
counter = counter + 1
print(('%s: Iteration: [%d]\t Time: %.3f DataTime: %.3f '
.. ' Err: %.4f'):format(
opt.name, counter,
tm:time().real, data_tm:time().real,
err and err or -1))
-- save checkpoint
-- :clearState() compacts the model so it takes less space on disk
if counter % opt.saveIter == 0 then
print('Saving ' .. opt.name .. '/iter' .. counter .. '_net.t7')
paths.mkdir('checkpoints')
paths.mkdir('checkpoints/' .. opt.name)
torch.save('checkpoints/' .. opt.name .. '/iter' .. counter .. '_net.t7', net:clearState())
--torch.save('checkpoints/' .. opt.name .. '/iter' .. counter .. '_optim.t7', optimState)
torch.save('checkpoints/' .. opt.name .. '/iter' .. counter .. '_history.t7', history)
end
end
end