forked from BVLC/caffe
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtools.py
121 lines (96 loc) · 3.38 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
class SimpleTransformer:
"""
SimpleTransformer is a simple class for preprocessing and deprocessing
images for caffe.
"""
def __init__(self, mean=[128, 128, 128]):
self.mean = np.array(mean, dtype=np.float32)
self.scale = 1.0
def set_mean(self, mean):
"""
Set the mean to subtract for centering the data.
"""
self.mean = mean
def set_scale(self, scale):
"""
Set the data scaling.
"""
self.scale = scale
def preprocess(self, im):
"""
preprocess() emulate the pre-processing occuring in the vgg16 caffe
prototxt.
"""
im = np.float32(im)
im = im[:, :, ::-1] # change to BGR
im -= self.mean
im *= self.scale
im = im.transpose((2, 0, 1))
return im
def deprocess(self, im):
"""
inverse of preprocess()
"""
im = im.transpose(1, 2, 0)
im /= self.scale
im += self.mean
im = im[:, :, ::-1] # change to RGB
return np.uint8(im)
class CaffeSolver:
"""
Caffesolver is a class for creating a solver.prototxt file. It sets default
values and can export a solver parameter file.
Note that all parameters are stored as strings. Strings variables are
stored as strings in strings.
"""
def __init__(self, testnet_prototxt_path="testnet.prototxt",
trainnet_prototxt_path="trainnet.prototxt", debug=False):
self.sp = {}
# critical:
self.sp['base_lr'] = '0.001'
self.sp['momentum'] = '0.9'
# speed:
self.sp['test_iter'] = '100'
self.sp['test_interval'] = '250'
# looks:
self.sp['display'] = '25'
self.sp['snapshot'] = '2500'
self.sp['snapshot_prefix'] = '"snapshot"' # string withing a string!
# learning rate policy
self.sp['lr_policy'] = '"fixed"'
# important, but rare:
self.sp['gamma'] = '0.1'
self.sp['weight_decay'] = '0.0005'
self.sp['train_net'] = '"' + trainnet_prototxt_path + '"'
self.sp['test_net'] = '"' + testnet_prototxt_path + '"'
# pretty much never change these.
self.sp['max_iter'] = '100000'
self.sp['test_initialization'] = 'false'
self.sp['average_loss'] = '25' # this has to do with the display.
self.sp['iter_size'] = '1' # this is for accumulating gradients
if (debug):
self.sp['max_iter'] = '12'
self.sp['test_iter'] = '1'
self.sp['test_interval'] = '4'
self.sp['display'] = '1'
def add_from_file(self, filepath):
"""
Reads a caffe solver prototxt file and updates the Caffesolver
instance parameters.
"""
with open(filepath, 'r') as f:
for line in f:
if line[0] == '#':
continue
splitLine = line.split(':')
self.sp[splitLine[0].strip()] = splitLine[1].strip()
def write(self, filepath):
"""
Export solver parameters to INPUT "filepath". Sorted alphabetically.
"""
f = open(filepath, 'w')
for key, value in sorted(self.sp.items()):
if not(type(value) is str):
raise TypeError('All solver parameters must be strings')
f.write('%s: %s\n' % (key, value))