-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
198 lines (158 loc) · 7.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import time
import datetime
import torch
import torch.utils.data
# from torch.utils.data import DataLoader
from src import UNet, UNet_3Plus, UNet_2Plus, AttU_Net
from train_utils import train_one_epoch, evaluate, create_lr_scheduler
from my_dataset import MyDataset
import transforms as T
# 训练图像数据预处理
class SegmentationPresetTrain:
def __init__(self, base_size, crop_size, hflip_prob=0.5, vflip_prob=0.5,
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
min_size = int(0.5 * base_size)
max_size = int(1.2 * base_size)
trans = [T.RandomResize(min_size, max_size)]
if hflip_prob > 0:
trans.append(T.RandomHorizontalFlip(hflip_prob))
if vflip_prob > 0:
trans.append(T.RandomVerticalFlip(vflip_prob))
trans.extend([
T.RandomCrop(crop_size),
T.ToTensor(),
T.Normalize(mean=mean, std=std),
])
self.transforms = T.Compose(trans)
def __call__(self, img, target):
return self.transforms(img, target)
# 验证图像预处理
class SegmentationPresetEval:
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.transforms = T.Compose([
T.ToTensor(),
T.Normalize(mean=mean, std=std),
])
def __call__(self, img, target):
return self.transforms(img, target)
def get_transform(train, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
base_size = 565
crop_size = 480
if train:
return SegmentationPresetTrain(base_size, crop_size, mean=mean, std=std)
else:
return SegmentationPresetEval(mean=mean, std=std)
def create_model(num_classes):
# model = UNet(in_channels=3, num_classes=num_classes, base_c=32)
# model = UNet_3Plus(in_channels=3, n_classes=num_classes)
model = AttU_Net(in_channels=3, num_classes=2)
# model = UNet_2Plus(in_channels=3, n_classes=num_classes)
return model
def main(args):
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
batch_size = args.batch_size
# segmentation nun_classes + background
num_classes = args.num_classes + 1
# # using compute_mean_std.py
mean = (0.709, 0.381, 0.224)
std = (0.127, 0.079, 0.043)
# knee
# mean = (0.397, 0.397, 0.397)
# std = (0.149, 0.149, 0.149)
# 用来保存训练以及验证过程中信息
results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
train_dataset = MyDataset(args.data_path,
train=True,
transforms=get_transform(train=True, mean=mean, std=std))
val_dataset = MyDataset(args.data_path,
train=False,
transforms=get_transform(train=False, mean=mean, std=std))
num_workers = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
num_workers=0,
shuffle=True,
pin_memory=True,
collate_fn=train_dataset.collate_fn)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=1,
num_workers=0,
pin_memory=True,
collate_fn=val_dataset.collate_fn)
model = create_model(num_classes=num_classes)
model.to(device)
params_to_optimize = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params_to_optimize,
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay
)
scaler = torch.cuda.amp.GradScaler() if args.amp else None
# 创建学习率更新策略,这里是每个step更新一次(不是每个epoch)
lr_scheduler = create_lr_scheduler(optimizer, len(train_loader), args.epochs, warmup=True)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.amp:
scaler.load_state_dict(checkpoint["scaler"])
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
mean_loss, lr = train_one_epoch(model, optimizer, train_loader, device, epoch,
lr_scheduler=lr_scheduler, print_freq=args.print_freq, scaler=scaler)
confmat, dice = evaluate(model, val_loader, device=device, num_classes=num_classes)
val_info = str(confmat)
print(val_info)
print(f"dice: {dice:.3f}")
# write into txt
with open(results_file, "a") as f:
# 记录每个epoch对应的train_loss、lr以及验证集各指标
train_info = f"[epoch: {epoch}]\n" \
f"train_loss: {mean_loss:.4f}\n" \
f"lr: {lr:.6f}\n" \
f"dice: {dice:.3f}\n"
f.write(train_info + val_info + "\n\n")
save_file = {"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"args": args}
if args.amp:
save_file["scaler"] = scaler.state_dict()
torch.save(save_file, "save_weights/model_{}.pth".format(epoch))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
# wechat_msg() # 发送微信消息
print("training time {}".format(total_time_str))
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="pytorch unet training")
parser.add_argument("--data-path", default="./", help="Lung_COVID root")
# exclude background
parser.add_argument("--num-classes", default=1, type=int)
parser.add_argument("--device", default="cuda", help="training device")
parser.add_argument("-b", "--batch-size", default=2, type=int)
parser.add_argument("--epochs", default=50, type=int, metavar="N",
help="number of total epochs to train")
parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--print-freq', default=1, type=int, help='print frequency')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='start epoch')
# Mixed precision training parameters
parser.add_argument("--amp", default=True, type=bool,
help="Use torch.cuda.amp for mixed precision training")
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
if not os.path.exists("./save_weights"):
os.mkdir("./save_weights")
main(args)