-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_multi_GPU.py
254 lines (207 loc) · 10.1 KB
/
train_multi_GPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import time
import os
import datetime
import torch
from src import UNet
from train_utils import train_one_epoch, evaluate, create_lr_scheduler, init_distributed_mode, save_on_master, mkdir
from my_dataset import DriveDataset
import transforms as T
class SegmentationPresetTrain:
def __init__(self, base_size, crop_size, hflip_prob=0.5, vflip_prob=0.5,
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
min_size = int(0.5 * base_size)
max_size = int(1.2 * base_size)
trans = [T.RandomResize(min_size, max_size)]
if hflip_prob > 0:
trans.append(T.RandomHorizontalFlip(hflip_prob))
if vflip_prob > 0:
trans.append(T.RandomVerticalFlip(vflip_prob))
trans.extend([
T.RandomCrop(crop_size),
T.ToTensor(),
T.Normalize(mean=mean, std=std),
])
self.transforms = T.Compose(trans)
def __call__(self, img, target):
return self.transforms(img, target)
class SegmentationPresetEval:
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.transforms = T.Compose([
T.ToTensor(),
T.Normalize(mean=mean, std=std),
])
def __call__(self, img, target):
return self.transforms(img, target)
def get_transform(train, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
base_size = 565
crop_size = 480
if train:
return SegmentationPresetTrain(base_size, crop_size, mean=mean, std=std)
else:
return SegmentationPresetEval(mean=mean, std=std)
def create_model(num_classes):
model = UNet(in_channels=3, num_classes=num_classes, base_c=32)
return model
def main(args):
init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# segmentation nun_classes + background
num_classes = args.num_classes + 1
# using compute_mean_std.py
mean = (0.709, 0.381, 0.224)
std = (0.127, 0.079, 0.043)
# 用来保存coco_info的文件
results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
data_root = args.data_path
# check data root
if os.path.exists(os.path.join(data_root, "DRIVE")) is False:
raise FileNotFoundError("DRIVE dose not in path:'{}'.".format(data_root))
train_dataset = DriveDataset(args.data_path,
train=True,
transforms=get_transform(train=True, mean=mean, std=std))
val_dataset = DriveDataset(args.data_path,
train=False,
transforms=get_transform(train=False, mean=mean, std=std))
print("Creating data loaders")
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
else:
train_sampler = torch.utils.data.RandomSampler(train_dataset)
test_sampler = torch.utils.data.SequentialSampler(val_dataset)
train_data_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.workers,
collate_fn=train_dataset.collate_fn, drop_last=True)
val_data_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=1,
sampler=test_sampler, num_workers=args.workers,
collate_fn=train_dataset.collate_fn)
print("Creating model")
# create model num_classes equal background + foreground classes
model = create_model(num_classes=num_classes)
model.to(device)
if args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
params_to_optimize = [p for p in model_without_ddp.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params_to_optimize,
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scaler = torch.cuda.amp.GradScaler() if args.amp else None
# 创建学习率更新策略,这里是每个step更新一次(不是每个epoch)
lr_scheduler = create_lr_scheduler(optimizer, len(train_data_loader), args.epochs, warmup=True)
# 如果传入resume参数,即上次训练的权重地址,则接着上次的参数训练
if args.resume:
# If map_location is missing, torch.load will first load the module to CPU
# and then copy each parameter to where it was saved,
# which would result in all processes on the same machine using the same set of devices.
checkpoint = torch.load(args.resume, map_location='cpu') # 读取之前保存的权重文件(包括优化器以及学习率策略)
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.amp:
scaler.load_state_dict(checkpoint["scaler"])
if args.test_only:
confmat = evaluate(model, val_data_loader, device=device, num_classes=num_classes)
val_info = str(confmat)
print(val_info)
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
mean_loss, lr = train_one_epoch(model, optimizer, train_data_loader, device, epoch,
lr_scheduler=lr_scheduler, print_freq=args.print_freq, scaler=scaler)
confmat, dice = evaluate(model, val_data_loader, device=device, num_classes=num_classes)
val_info = str(confmat)
print(val_info)
print(f"dice: {dice:.3f}")
# 只在主进程上进行写操作
if args.rank in [-1, 0]:
# write into txt
with open(results_file, "a") as f:
# 记录每个epoch对应的train_loss、lr以及验证集各指标
train_info = f"[epoch: {epoch}]\n" \
f"train_loss: {mean_loss:.4f}\n" \
f"lr: {lr:.6f}\n" \
f"dice: {dice:.3f}\n"
f.write(train_info + val_info + "\n\n")
if args.output_dir:
# 只在主节点上执行保存权重操作
save_file = {'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'args': args,
'epoch': epoch}
if args.amp:
save_file["scaler"] = scaler.state_dict()
save_on_master(save_file,
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
# 训练文件的根目录(DRIVE)
parser.add_argument('--data-path', default='./', help='dataset')
# 训练设备类型
parser.add_argument('--device', default='cuda', help='device')
# 检测目标类别数(不包含背景)
parser.add_argument('--num-classes', default=1, type=int, help='num_classes')
# 每块GPU上的batch_size
parser.add_argument('-b', '--batch-size', default=4, type=int,
help='images per gpu, the total batch size is $NGPU x batch_size')
# 指定接着从哪个epoch数开始训练
parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
# 训练的总epoch数
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
# 是否使用同步BN(在多个GPU之间同步),默认不开启,开启后训练速度会变慢
parser.add_argument('--sync_bn', type=bool, default=False, help='whether using SyncBatchNorm')
# 数据加载以及预处理的线程数
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# 训练学习率,这里默认设置成0.01(使用n块GPU建议乘以n),如果效果不好可以尝试修改学习率
parser.add_argument('--lr', default=0.01, type=float,
help='initial learning rate')
# SGD的momentum参数
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
# SGD的weight_decay参数
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
# 训练过程打印信息的频率
parser.add_argument('--print-freq', default=1, type=int, help='print frequency')
# 文件保存地址
parser.add_argument('--output-dir', default='./multi_train', help='path where to save')
# 基于上次的训练结果接着训练
parser.add_argument('--resume', default='', help='resume from checkpoint')
# 不训练,仅测试
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
# 分布式进程数
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
# Mixed precision training parameters
parser.add_argument("--amp", default=False, type=bool,
help="Use torch.cuda.amp for mixed precision training")
args = parser.parse_args()
# 如果指定了保存文件地址,检查文件夹是否存在,若不存在,则创建
if args.output_dir:
mkdir(args.output_dir)
main(args)