We provide raw data we used in our experiments on Meta-world(metaworld_raw_data.pkl
) and DeepMind Control Suite (dmc_raw_data.pkl
). To compute IQM, you can utilize rliable repository.
To load the raw data we used in our experiments:
import pickle
with open('metaworld_raw_data.pkl', 'rb') as f:
metaworld_raw_data = pickle.load(f)
metaworld_raw_data
is a dictionary that consists like this:
metaworld_raw_data = {
'DreamerV2': {
'metaworld_lever_pull': np.array([8, 25]),
...,
'metaworld_reach': np.array([8, 25]),
},
'APV': {
'metaworld_lever_pull': np.array([8, 25]),
...,
'metaworld_reach': np.array([8, 25]),
}
}
-
Meta-world Experiments: we report the average success rate over 10 trials at
[5000, 15000, ..., 250000]
environment steps (with action repeat of 1). -
DeepMind Control Suite Experiments: we report the episode return over 1 episode at
[2000, 22000, ..., 982000]
environment steps (with aciton repeat of 2)