-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_diff_noise3.py
350 lines (304 loc) · 14.2 KB
/
train_diff_noise3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
"""
Train with 7 slices situation
"""
import numpy as np
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import time
import torch
import logging
from model.PLholonet import PLholonet
from utils.dataset import create_dataloader_Poisson
from utils.utilis import PCC, PSNR, accuracy, random_init, tensor2value, plotcube, acc_and_recall_with_buffer, \
prediction_metric
from torch.optim import Adam
from tqdm import tqdm
from argparse import ArgumentParser
from torch.utils.tensorboard import SummaryWriter
import torch.optim as optim
import re
import matplotlib.pyplot as plt
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train_epoch(model, opt, dataloader, epoch, freeze=[]):
model.train()
for k, v in model.named_parameters():
v.requires_grad = True
if any(x in k for x in freeze):
print('freezing %s' % k)
v.requires_grad = False
nbatch = len(dataloader)
pbar = enumerate(dataloader)
pbar = tqdm(pbar, total=nbatch)
logger.info('\n Training========================================')
logger.info(('\n' + '%10s' * 8) % ('Epoch ', 'GPU_memory', 'c_sloss', 'c_dloss', 'loss', 'acc', 'pcc', 'psnr'))
total_loss = []
sloss = []
dloss = []
acc = []
pcc = []
psnr = []
opt.zero_grad()
for i, (y, label, otf3d) in pbar:
y = y.to(device=model.device)
otf3d = otf3d.to(torch.complex64).to(device=model.device)
label = label.to(torch.float32).to(device=model.device)
x, _sloss = model(y, otf3d)
# the output prediction should be transmittance where 0 stands for object
gt = torch.ones_like(label) - label
# _dloss = torch.mean(torch.pow(x-gt,2))
_dloss = torch.nn.BCELoss()(x, gt)
_total_loss = _dloss + _sloss
_total_loss.backward()
opt.step()
# metric calculation
_pcc = PCC(x, gt)
_psnr = PSNR(x, gt)
_acc = accuracy(x, gt)
# update metric
total_loss.append(tensor2value(_total_loss))
sloss.append(tensor2value(_sloss))
dloss.append(tensor2value(_dloss))
pcc.append(tensor2value(_pcc))
psnr.append(tensor2value(_psnr))
acc.append(tensor2value(_acc))
# printing
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)
info = ('%10s' * 2 + '%10.4g' * 6) % (
'%g' % (epoch), mem, _sloss, _dloss, np.mean(total_loss), _acc, _pcc, _psnr)
pbar.set_description(info)
return np.mean(sloss), np.mean(dloss), np.mean(total_loss), np.mean(acc), np.mean(pcc), np.mean(psnr)
def eval_epoch(model, opt, dataloader, epoch):
model.eval()
nbatch = len(dataloader)
pbar = enumerate(dataloader)
pbar = tqdm(pbar, total=nbatch)
logger.info('\n Evaluation========================================')
# logger.info(('\n'+'%10s'*7)%('Epoch ','GPU_memory','c_sloss','c_dloss','loss','pcc','psnr'))
total_loss = []
sloss = []
dloss = []
pcc = []
psnr = []
acc = []
recall = []
predAcc = []
with torch.no_grad():
for i, (y, label, otf3d) in pbar:
y = y.to(device=model.device)
otf3d = otf3d.to(torch.complex64).to(device=model.device)
label = label.to(torch.float32).to(device=model.device)
x, _sloss = model(y, otf3d)
gt = torch.ones_like(label) - label
gt = gt.to(torch.float32).to(device=model.device)
# _dloss = torch.mean(torch.pow(x-gt,2))
_dloss = torch.nn.BCELoss()(x, gt)
_total_loss = _dloss + _sloss
# metric
_pcc = PCC(x, gt)
_psnr = PSNR(x, gt)
_acc = accuracy(x, gt)
_rec, _predacc = acc_and_recall_with_buffer(tensor2value(x), tensor2value(label), buffer=10, mean=True,
threshold=0.5, grouped=False)
# printing
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)
# info = ('%10s'*2 + '%10.4g'*5)%('%g'%(epoch),mem,stage_symlosses,loss_discrepancy,avg_loss,pcc_,psnr_)
# pbar.set_description(info)
pbar.set_description("Evaluating.....")
total_loss.append(tensor2value(_total_loss))
sloss.append(tensor2value(_sloss))
dloss.append(tensor2value(_dloss))
pcc.append(tensor2value(_pcc))
psnr.append(tensor2value(_psnr))
acc.append(tensor2value(_acc))
recall.append(_rec)
predAcc.append(_predacc)
logger.info(('\n' + '%10s' * 9) % (' ', 'sloss', 'dloss', 'loss', 'acc', 'pcc', 'psnr', 'recall', 'PredAcc'))
info = ('%10s' + '%10.4g' * 8) % ('Eval_result', np.mean(sloss), np.mean(dloss),
np.mean(total_loss), np.mean(acc), np.mean(pcc), np.mean(psnr), np.mean(recall),
np.mean(predAcc))
logger.info(info)
return np.mean(sloss), np.mean(dloss), np.mean(total_loss), np.mean(acc), np.mean(pcc), np.mean(psnr), np.mean(
recall), np.mean(predAcc)
def visual_after_epoch(model, dataloader, epoch, out_dir=None):
y, label, otf3d = next(iter(dataloader))
# evaluation and visualization the results
model.eval()
with torch.no_grad():
y = y.to(torch.float32).to(device=model.device)
otf3d = otf3d.to(torch.complex64).to(device=model.device)
label = label.to(torch.float32).to(device=model.device)
x, _sloss = model(y, otf3d)
if len(x.shape) == 4:
x = x[0, :, :, :]
label = label[0, :, :, :]
pred_cube = torch.zeros_like(x)
idx = (x >= 0.5)
pred_cube[idx] = torch.ones_like(x)[idx]
pred_cube = tensor2value(pred_cube)
gt = tensor2value(label)
[recall, acc] = prediction_metric(1 - pred_cube, gt, buffer=10, threshold=0.5, grouped=False)
file_name = out_dir + "/Hologram.png"
plt.imsave(file_name, y[0, 0, :, :].cpu().numpy(), cmap='gray')
plotcube(gt, 'GT', out_dir + "/Gt.png", show=False)
filename = os.path.join(out_dir, "Pred_Epoch{:d}".format(epoch) + ".png")
plotcube(pred_cube, 'P_A%.3f' % (acc), filename, show=False)
if __name__ == "__main__":
random_init(seed=43)
parser = ArgumentParser(description='PLholonet')
parser.add_argument('--batch_sz', type=int, default=32, help='batch size')
parser.add_argument('--train_data_path', type=str,
default='train_Nxy256_Nz7_ppv1.1e-04_dz6.9mm_pps13.8um_lambda660nm',
help='datapath with params')
parser.add_argument('--val_data_path', type=str, default='val_Nxy256_Nz7_ppv1.1e-04_dz6.9mm_pps13.8um_lambda660nm',
help='datapath with params')
parser.add_argument('--data_root', type=str, default='/mnt/disk/zhangyp/datasets/LLParticle', help='data root')
# parser.add_argument('--obj_type', type=str, default='sim', help='exp or sim')
parser.add_argument('--Nz', type=int, default=7, help='depth number')
parser.add_argument('--dz', type=str, default='1200um', help='depth interval')
parser.add_argument('--ppv', type=str, default='5e-03', help='ppv')
parser.add_argument('--lr_init', type=float, default=1e-3, help='initial learning rate')
parser.add_argument('--epochs', type=int, default=300, help='epochs')
parser.add_argument('--Nxy', type=int, default=64, help='lateral size')
parser.add_argument('--gamma', type=float, default=1, help='symmetric loss parameter')
parser.add_argument('--layer_num', type=int, default=5, help='phase number of PLholoNet')
parser.add_argument("--visualization", action='store_true', default=True,
help='whether output visualization results during training')
parser.add_argument('--ALPHA', type=int, default=15, help='Photon level')
# args = parser.parse_args([])
try:
args = parser.parse_args()
except:
args = parser.parse_args([])
Nd = args.layer_num
batch_sz = args.batch_sz
lr = args.lr_init
train_data_path = args.train_data_path
val_data_path = args.val_data_path
gamma = args.gamma
ALPHA = args.ALPHA
train_params_txt = 'L' + str(Nd) + '_B' + str(batch_sz) + '_lr' + str(lr) + '_Gamma' + str(gamma)+'_Alpha' + str(ALPHA)
try:
print("Compile the params from the dataset")
data_name = train_data_path.split('/')[-1]
params = data_name.split('_')
args.Nz = [eval(re.findall(r'Nz(\d+)', x)[0]) for x in params if re.findall(r'Nz(\d+)', x)][0]
args.Nxy = [eval(re.findall(r'Nxy(\d+)', x)[0]) for x in params if re.findall(r'Nxy(\d+)', x)][0]
except:
print("Loading the default value:")
Nz = args.Nz
Nxy = args.Nxy
sys_param = train_data_path + '_' + train_params_txt
train_data_path = os.path.join(args.data_root, train_data_path)
val_data_path = os.path.join(args.data_root, val_data_path)
out_dir = './experiment/'
log_dir = './logs/'
model_name = 'PLHolo_' + sys_param
# if not os.path.isdir(out_dir + model_name):
# os.makedirs(out_dir + model_name)
# if not os.path.isdir(log_dir + model_name):
# os.makedirs(log_dir + model_name)
timestr = time.strftime("/%Y-%m-%d-%H_%M_%S", time.localtime())
save_dir = out_dir + model_name + timestr
log_dir = log_dir + model_name
log_file = log_dir + timestr + '.log'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(message)s", level=logging.INFO)
formater = logging.Formatter("%(message)s")
# define the filehaddler for writing log in file
fh = logging.FileHandler(log_file)
fh.setLevel(logging.INFO)
fh.setFormatter(formater)
# define the StreamHandler for writing on the screen
sh = logging.StreamHandler()
sh.setLevel(logging.INFO)
sh.setFormatter(formater)
# add both handlers
logger.addHandler(fh)
# logger.addHandler(sh)
logger.info("The args are following:")
logger.info(args)
print(args)
tb_writer = SummaryWriter(save_dir)
last_path = os.path.join(save_dir, 'last.pt')
best_path = os.path.join(save_dir, 'best.pt')
# %% Dataset prepare
train_dataloader, train_dataset = create_dataloader_Poisson(train_data_path, batch_size=batch_sz, alpha=ALPHA,
is_training=True)
val_dataloader, val_dataset = create_dataloader_Poisson(val_data_path, batch_size=batch_sz, alpha=ALPHA,
is_training=True)
model = PLholonet(n=Nd, d=Nz, alpha=ALPHA, sysloss_param=args.gamma)
if torch.cuda.is_available():
model = torch.nn.DataParallel(model)
model = model.module.to("cuda")
model.device = torch.device('cuda')
else:
model = torch.nn.DataParallel(model)
model.device = torch.device('cpu')
optimizer = Adam(model.parameters(), lr=lr)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, patience=3, factor=0.5, threshold=0.001,
verbose=True)
# if args.resume:
# if torch.cuda.is_available():
# state_dict = torch.load(args.model_path,map_location='cuda')
# model = torch.nn.DataParallel(model)
# model = model.module.to("cuda")
# model.device = torch.device('cuda')
# else:
# state_dict = torch.load(args.model_path,map_location='cpu')
# model.device = torch.device('cpu')
# model.load_state_dict(state_dict['param'])
# optimizer = Adam(model.parameters(),lr=lr)
# optimizer.load_state_dict(state_dict['optimizer'])
# resume
start_epoch = 0
end_epoch = start_epoch + args.epochs
scheduler.last_epoch = start_epoch - 1
max_acc_recall = 0
for epoch in range(start_epoch, end_epoch, 1):
train_out = train_epoch(model, optimizer, train_dataloader, epoch)
eval_out = eval_epoch(model, optimizer, val_dataloader, epoch)
# Log
current_lr = optimizer.param_groups[0]['lr']
_train_loss = train_out[2]
_eval_loss = eval_out[2] # read the total loss of evaluation as the metric for learning rate scheduler
scheduler.step(_train_loss)
if tb_writer:
tb_writer.add_scalar('train/lr', current_lr, epoch)
tags = ['train/sloss', 'train/dloss', 'train/total_loss', 'train/acc', 'train/pcc', 'train/psnr',
# train loss & metric
'val/sloss', 'val/dloss', 'val/total_loss', 'val/acc', 'val/pcc', 'val/psnr', 'val/recall',
'val/predacc' # val loss & metric
] # params
for x, tag in zip(list(train_out[::]) + list(eval_out[::]), tags):
if tb_writer:
tb_writer.add_scalar(tag, x, epoch) # tensorboard
# tags = ['params/sloss_weight0','params/sloss_weight1','params/sloss_weight2','params/sloss_weight3','params/sloss_weight4']
# params_sloss= model.state_dict()['module.sloss_weights']
# if tb_writer:
# for x,tag in zip(params_sloss,tags):
# tb_writer.add_scalar(tag,x,epoch)
# tb_writer.add_scalar('sloss_param',model.state_dict()['module.sysloss_param'],epoch)
# save the last ckpt
ckpt = {
'param': model.state_dict(),
'model_name': model_name,
'last_epoch': epoch,
'optimizer': optimizer.state_dict(),
'alpha': ALPHA
}
torch.save(ckpt, last_path)
logger.info("\n Epoch {:d} saved".format(epoch))
# update the best
acc_recall = 0.5 * (eval_out[-1] + eval_out[-2])
if acc_recall > max_acc_recall:
max_acc_recall = acc_recall
if max_acc_recall == acc_recall and eval_out[-2] > 0.8 and eval_out[-1] > 0.8:
torch.save(ckpt, best_path)
logger.info("Best updated at Epoch {:d}".format(epoch))
visual_after_epoch(model, val_dataloader, epoch, save_dir)
if args.visualization and epoch % 5 == 0:
visual_after_epoch(model, val_dataloader, epoch, save_dir)