-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_loader.py
64 lines (54 loc) · 2.1 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
def train_data_loader(batch_size=256, workers=1, shuffle=True):
""" return training, test dataloader
Args:
batch_size : (int) dataloader batchsize
workers : (int) # of subprocesses
shuffle : (bool) data shuffle at every epoch
Returns:
train_data_loader : torch dataloader obj.
test_data_loader : torch dataloader obj.
"""
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean = [0.4913997551666284, 0.48215855929893703, 0.4465309133731618],
std = [0.24703225141799082, 0.24348516474564, 0.26158783926049628])
])
train_dataset = datasets.CIFAR10(root='./data/train', train=True, download=True, transform=transform)
train_data_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=workers
)
return train_data_loader
def test_data_loader(batch_size=256, workers=1, shuffle=True):
""" return training, test dataloader
Args:
batch_size : (int) dataloader batchsize
workers : (int) # of subprocesses
shuffle : (bool) data shuffle at every epoch
Returns:
train_data_loader : torch dataloader obj.
test_data_loader : torch dataloader obj.
"""
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean = [0.4913997551666284, 0.48215855929893703, 0.4465309133731618],
std = [0.24703225141799082, 0.24348516474564, 0.26158783926049628])
])
test_dataset = datasets.CIFAR10(root='./data/test', train=False, download=True, transform=transform)
test_data_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=workers
)
return test_data_loader