Skip to content
/ geos Public
forked from mist64/geos

Source code of GEOS 2.0 for the Commodore 64 and 128

Notifications You must be signed in to change notification settings

ytmytm/geos

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GEOS Source Code

by Berkeley Softworks, reverse engineered by Maciej Witkowiak, Michael Steil

Description

This is the reverse engineered source code of the KERNAL (plus disk and input drivers) of the English version of GEOS 2.0 for Commodore 64.

The source has been heavily reorganized and modularized, nevertheless, a standard compile will generate binaries that are identical with the GEOS 2.0 distribution binaries.

Requirements

  • make, bash, dd
  • cc65 for assembling and linking
  • pucrunch for generating a compressed executable
  • c1541 for generating the disk image

Without pucrunch/c1541, you can still build an uncompressed KERNAL binary image.

Building

Run make to build GEOS. This will create the following files:

  • raw KERNAL components: kernal.bin, lokernal.bin, init.bin
  • disk drive drivers: drv1541.bin, drv1571.bin, drv1581.bin
  • input drivers: amigamse.bin, joydrv.bin, lightpen.bin, mse1531.bin, koalapad.bin, pcanalog.bin
  • combined KERNAL image (SYS 49155): combined.prg
  • compressed KERNAL image (RUN): compressed.prg
  • disk image: geos.d64

If you have the cbmfiles.com GEOS64.D64 image in the current directory, the disk image will be based on that one, with the GEOS and GEOBOOT files deleted and the newly built kernel added. Otherwise, it will be a new disk image with the kernel, and, if you have a desktop.cvt file in the current directory, with DESK TOP added.

Customization

config.inc contains lots of compile time options. Most of them have not been tested recently and may not work.

Source Tree

  • Makefile
  • config.inc: kernel config options
  • regress.sh: script that compares output with reference
  • drv/: disk drive driver source
  • inc/: include files: macros and symbols
  • input/: input driver source
  • kernal/: kernal source
  • reference/: original binaries from the cbmfiles.com version

Hacking

Code layout

Great care was taken to split the KERNAL into small, independent components. This division does not necessarily match the layout of the original binary code, but with the help of .segments, the layout in the binary does not have to match the layout in source.

The goal of this division of the source was to keep the number of .imports minimal (i.e. to make individual source files as self-contained and independent as possible).

One example of this is the file system and application/accessory loading code. In the original GEOS KERNAL binary, they were not separate, but here, the file system code is in filesys.s and the loading code is in load.s, with only two symbol dependencies.

Another example is the ToBasic logic: In the original kernel, it the binary code was split, a part resided between the header and the jump table ($C000-$C0FF), and different part was in the "lokernal" area ($9000-$9FFF). In the source, both parts are in the same file tobasic.s.

Machine-specific Code

In case you want to adapt the source for other 6502-based systems, you will want to know which parts have C64 dependencies.

All C64-specific code can be easily recognized: Since all C64 symbols have to be imported from c64.inc, you can tell which source files have C64 depencency by looking for that include. Remove the include to see which parts of the code are platform-specific.

InitTextPrompt in conio.s, for example, accesses sprites directly, in the middle of hardware-independent code.

Memory Layout

The GEOS KERNAL has a quite complicated memory layout:

  • $9000-$9FFF: KERNAL ("lokernal")
  • $A000-$BF3F: (graphics bitmap)
  • $BF40-$BFFF: KERNAL
  • $C000-$C01A: KERNAL Header
  • $C01B-$C0FF: KERNAL
  • $C100-$C2E5: KERNAL Jump Table
  • $C2E6-$FFFF: KERNAL

The header and the jump table must be at $C000 and $C100, respectively. Together with the graphics bitmap at $A000, this partitions the KERNAL into four parts: lokernal, below header, between header and jump table, and above jump table.

The linker config file positions the segments from the source files into these parts. If the code of any segment changes, the header and the jump table will remain at their positions. If a part overruns, the linker will report and error, and you can consult the kernal.map output file to find out where to best put the extra code.

But it gets more complicated: Code between $D000 and $DFFF is under the I/O registers, so it cannot enable the I/O area to access hardware. The macro ASSERT_NOT_BELOW_IO makes sure that the current code is not under the I/O area. Existing code uses this macro just befor turning on the I/O area and just after turning it off. New code should use this macro, too.

Naming Conventions

  • Symbols used outside of the current source file are supposed to be prefixed with an _. (This hasn't been done consistently yet.)
  • Labels that are only used within a subroutine should use the @ notation.

Copy protection

The original GEOS was copy protected in three ways:

  • The original loader decrypted the KERNAL at load time and refused to do so if the floppy disk was a copy. Like the cbmfiles.com version, this version doesn't use the original loader, and the kernel is available in plaintext.
  • deskTop assigned a random serial number to the kernel on first boot and keyed all major applications to itself. This version comes with a serial number of 0x58B5 pre-filled, which matches the cbmfiles.com version.
  • To counter tampering with the serial number logic, the KERNAL contained two traps that could sabotage the kernel. The code is included in this version, but can be removed by setting trap = 0.

Contributing

Pull requests are greatly appreciated. Please keep in mind that a default build should always recreate the orginal binaries (use regress.sh to check), so for smaller changes use conditional assembly using .if, and for larger changes create new source files that are conditionally compiled.

TODO

  • Reconstruction/cleanup:
    • complete inline documentation of KERNAL calls
    • boot.s should be based on the original GEOS version
    • REU detection is missing from boot.s
    • The 1541 driver is hardcoded. We should create one version per drive.
    • Most of Maciej's original changes/improvements have bitrotten and need to be resurrected
  • Integrate other versions as compile time options
    • Localized versions
    • Plus/4 version
    • C128 version (includes 640px support, linear framebuffer graphics, new APIs)
    • Apple II version (includes new APIs)
  • Integrate existing patches as compile time options
    • gateWay
    • megaPatch
    • Wheels
    • SuperCPU
    • Flash 8
    • misc
  • Add third party disk drivers
    • CMD hardware
    • Modern hardware
  • Optimizations
    • Faster (with size tradeoff) font.s and graph.s code
    • Alternate code paths for 65C02, 65CE02, 65816
  • Extensions
    • upgrade DlgBox to support more than 16 files
    • support +60K and RamCart simultaneousy (hell!)
    • support swapping KERNAL modules to/from expansion
    • disk cache (at least dir cache) (hell!)
    • try to rewrite 1571/81 to use burst commands instead of turbodos (only on burst-enabled C64/128 in C64 mode - see Pasi Ojala's design)
  • Reverse-engineer other components, like deskTop
  • Port to new systems. :)

References

License

For the underlying work on GEOS, please respect its license.

The intellectual property added by the reverse-engineering and the subsequent improvements is in the public domain, but the authors request to be credited.

Authors

GEOS was initially developed by Berkeley Softworks in 1985-1988.

The original reverse-engineering was done by Maciej 'YTM/Elysium' Witkowiak in 1999-2002, targeted the ACME assembler and was released as GEOS 2000, which included several code optimizations and code layout differences.

In 2015/2016, Michael Steil ported the sources to cc65, reconstructed the original code layout, did some more reverse-engineering and cleanups, and modularized the code aggressively.

Releases

No releases published

Packages

No packages published

Languages

  • Assembly 96.8%
  • Makefile 2.1%
  • Other 1.1%