forked from AntixK/PyTorch-VAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
55 lines (45 loc) · 1.65 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import yaml
import argparse
import numpy as np
from models import *
from experiment import VAEXperiment
import torch.backends.cudnn as cudnn
from pytorch_lightning import Trainer
from pytorch_lightning.logging import TestTubeLogger
parser = argparse.ArgumentParser(description='Generic runner for VAE models')
parser.add_argument('--config', '-c',
dest="filename",
metavar='FILE',
help = 'path to the config file',
default='configs/vae.yaml')
args = parser.parse_args()
with open(args.filename, 'r') as file:
try:
config = yaml.safe_load(file)
except yaml.YAMLError as exc:
print(exc)
tt_logger = TestTubeLogger(
save_dir=config['logging_params']['save_dir'],
name=config['logging_params']['name'],
debug=False,
create_git_tag=False,
)
# For reproducibility
torch.manual_seed(config['logging_params']['manual_seed'])
np.random.seed(config['logging_params']['manual_seed'])
cudnn.deterministic = True
cudnn.benchmark = False
model = vae_models[config['model_params']['name']](**config['model_params'])
experiment = VAEXperiment(model,
config['exp_params'])
runner = Trainer(default_save_path=f"{tt_logger.save_dir}",
min_nb_epochs=1,
logger=tt_logger,
log_save_interval=100,
train_percent_check=1.,
val_percent_check=1.,
num_sanity_val_steps=5,
early_stop_callback = False,
**config['trainer_params'])
print(f"======= Training {config['model_params']['name']} =======")
runner.fit(experiment)